Abstract:In this work, we aim to address the challenging task of open set recognition (OSR). Many recent OSR methods rely on auto-encoders to extract class-specific features by a reconstruction strategy, requiring the network to restore the input image on pixel-level. This strategy is commonly over-demanding for OSR since class-specific features are generally contained in target objects, not in all pixels. To address this shortcoming, here we discard the pixel-level reconstruction strategy and pay more attention to improving the effectiveness of class-specific feature extraction. We propose a mutual information-based method with a streamlined architecture, Maximal Mutual Information Open Set Recognition (M2IOSR). The proposed M2IOSR only uses an encoder to extract class-specific features by maximizing the mutual information between the given input and its latent features across multiple scales. Meanwhile, to further reduce the open space risk, latent features are constrained to class conditional Gaussian distributions by a KL-divergence loss function. In this way, a strong function is learned to prevent the network from mapping different observations to similar latent features and help the network extract class-specific features with desired statistical characteristics. The proposed method significantly improves the performance of baselines and achieves new state-of-the-art results on several benchmarks consistently.
Abstract:Recently deep learning has achieved significant progress on point cloud analysis tasks. Learning good representations is of vital importance to these tasks. Most current methods rely on massive labelled data for training. We here propose a point discriminative learning method for unsupervised representation learning on 3D point clouds, which can learn local and global geometry features. We achieve this by imposing a novel point discrimination loss on the middle level and global level point features produced in the backbone network. This point discrimination loss enforces the features to be consistent with points belonging to the shape surface and inconsistent with randomly sampled noisy points. Our method is simple in design, which works by adding an extra adaptation module and a point consistency module for unsupervised training of the encoder in the backbone network. Once trained, these two modules can be discarded during supervised training of the classifier or decoder for down-stream tasks. We conduct extensive experiments on 3D object classification, 3D part segmentation and shape reconstruction in various unsupervised and transfer settings. Both quantitative and qualitative results show that our method learns powerful representations and achieves new state-of-the-art performance.
Abstract:This paper investigates an open research task of text-to-image synthesis for automatically generating or manipulating images from text descriptions. Prevailing methods mainly use the text as conditions for GAN generation, and train different models for the text-guided image generation and manipulation tasks. In this paper, we propose a novel unified framework of Cycle-consistent Inverse GAN (CI-GAN) for both text-to-image generation and text-guided image manipulation tasks. Specifically, we first train a GAN model without text input, aiming to generate images with high diversity and quality. Then we learn a GAN inversion model to convert the images back to the GAN latent space and obtain the inverted latent codes for each image, where we introduce the cycle-consistency training to learn more robust and consistent inverted latent codes. We further uncover the latent space semantics of the trained GAN model, by learning a similarity model between text representations and the latent codes. In the text-guided optimization module, we generate images with the desired semantic attributes by optimizing the inverted latent codes. Extensive experiments on the Recipe1M and CUB datasets validate the efficacy of our proposed framework.
Abstract:Image manipulation with natural language, which aims to manipulate images with the guidance of language descriptions, has been a challenging problem in the fields of computer vision and natural language processing (NLP). Currently, a number of efforts have been made for this task, but their performances are still distant away from generating realistic and text-conformed manipulated images. Therefore, in this paper, we propose a memory-based Image Manipulation Network (MIM-Net), where a set of memories learned from images is introduced to synthesize the texture information with the guidance of the textual description. We propose a two-stage network with an additional reconstruction stage to learn the latent memories efficiently. To avoid the unnecessary background changes, we propose a Target Localization Unit (TLU) to focus on the manipulation of the region mentioned by the text. Moreover, to learn a robust memory, we further propose a novel randomized memory training loss. Experiments on the four popular datasets show the better performance of our method compared to the existing ones.
Abstract:Semantic segmentation on 3D point clouds is an important task for 3D scene understanding. While dense labeling on 3D data is expensive and time-consuming, only a few works address weakly supervised semantic point cloud segmentation methods to relieve the labeling cost by learning from simpler and cheaper labels. Meanwhile, there are still huge performance gaps between existing weakly supervised methods and state-of-the-art fully supervised methods. In this paper, we train a semantic point cloud segmentation network with only a small portion of points being labeled. We argue that we can better utilize the limited supervision information as we densely propagate the supervision signal from the labeled points to other points within and across the input samples. Specifically, we propose a cross-sample feature reallocating module to transfer similar features and therefore re-route the gradients across two samples with common classes and an intra-sample feature redistribution module to propagate supervision signals on unlabeled points across and within point cloud samples. We conduct extensive experiments on public datasets S3DIS and ScanNet. Our weakly supervised method with only 10\% and 1\% of labels can produce compatible results with the fully supervised counterpart.
Abstract:Due to the scarcity of annotated scene flow data, self-supervised scene flow learning in point clouds has attracted increasing attention. In the self-supervised manner, establishing correspondences between two point clouds to approximate scene flow is an effective approach. Previous methods often obtain correspondences by applying point-wise matching that only takes the distance on 3D point coordinates into account, introducing two critical issues: (1) it overlooks other discriminative measures, such as color and surface normal, which often bring fruitful clues for accurate matching; and (2) it often generates sub-par performance, as the matching is operated in an unconstrained situation, where multiple points can be ended up with the same corresponding point. To address the issues, we formulate this matching task as an optimal transport problem. The output optimal assignment matrix can be utilized to guide the generation of pseudo ground truth. In this optimal transport, we design the transport cost by considering multiple descriptors and encourage one-to-one matching by mass equality constraints. Also, constructing a graph on the points, a random walk module is introduced to encourage the local consistency of the pseudo labels. Comprehensive experiments on FlyingThings3D and KITTI show that our method achieves state-of-the-art performance among self-supervised learning methods. Our self-supervised method even performs on par with some supervised learning approaches, although we do not need any ground truth flow for training.
Abstract:Scene flow in 3D point clouds plays an important role in understanding dynamic environments. Although significant advances have been made by deep neural networks, the performance is far from satisfactory as only per-point translational motion is considered, neglecting the constraints of the rigid motion in local regions. To address the issue, we propose to introduce the motion consistency to force the smoothness among neighboring points. In addition, constraints on the rigidity of the local transformation are also added by sharing unique rigid motion parameters for all points within each local region. To this end, a high-order CRFs based relation module (Con-HCRFs) is deployed to explore both point-wise smoothness and region-wise rigidity. To empower the CRFs to have a discriminative unary term, we also introduce a position-aware flow estimation module to be incorporated into the Con-HCRFs. Comprehensive experiments on FlyingThings3D and KITTI show that our proposed framework (HCRF-Flow) achieves state-of-the-art performance and significantly outperforms previous approaches substantially.
Abstract:Garment transfer shows great potential in realistic applications with the goal of transfering outfits across different people images. However, garment transfer between images with heavy misalignments or severe occlusions still remains as a challenge. In this work, we propose Complementary Transfering Network (CT-Net) to adaptively model different levels of geometric changes and transfer outfits between different people. In specific, CT-Net consists of three modules: 1) A complementary warping module first estimates two complementary warpings to transfer the desired clothes in different granularities. 2) A layout prediction module is proposed to predict the target layout, which guides the preservation or generation of the body parts in the synthesized images. 3) A dynamic fusion module adaptively combines the advantages of the complementary warpings to render the garment transfer results. Extensive experiments conducted on DeepFashion dataset demonstrate that our network synthesizes high-quality garment transfer images and significantly outperforms the state-of-art methods both qualitatively and quantitatively.
Abstract:Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points, without forgetting knowledge of old classes. The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems. Moreover, as training data come in sequence in FSCIL, the learned classifier can only provide discriminative information in individual sessions, while FSCIL requires all classes to be involved for evaluation. In this paper, we address the FSCIL problem from two aspects. First, we adopt a simple but effective decoupled learning strategy of representations and classifiers that only the classifiers are updated in each incremental session, which avoids knowledge forgetting in the representations. By doing so, we demonstrate that a pre-trained backbone plus a non-parametric class mean classifier can beat state-of-the-art methods. Second, to make the classifiers learned on individual sessions applicable to all classes, we propose a Continually Evolved Classifier (CEC) that employs a graph model to propagate context information between classifiers for adaptation. To enable the learning of CEC, we design a pseudo incremental learning paradigm that episodically constructs a pseudo incremental learning task to optimize the graph parameters by sampling data from the base dataset. Experiments on three popular benchmark datasets, including CIFAR100, miniImageNet, and Caltech-USCD Birds-200-2011 (CUB200), show that our method significantly outperforms the baselines and sets new state-of-the-art results with remarkable advantages.
Abstract:Data augmentation is vital for deep learning neural networks. By providing massive training samples, it helps to improve the generalization ability of the model. Weakly supervised semantic segmentation (WSSS) is a challenging problem that has been deeply studied in recent years, conventional data augmentation approaches for WSSS usually employ geometrical transformations, random cropping and color jittering. However, merely increasing the same contextual semantic data does not bring much gain to the networks to distinguish the objects, e.g., the correct image-level classification of "aeroplane" may be not only due to the recognition of the object itself, but also its co-occurrence context like "sky", which will cause the model to focus less on the object features. To this end, we present a Context Decoupling Augmentation (CDA) method, to change the inherent context in which the objects appear and thus drive the network to remove the dependence between object instances and contextual information. To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.