Abstract:Image style transfer aims to integrate the visual patterns of a specific artistic style into a content image while preserving its content structure. Existing methods mainly rely on the generative adversarial network (GAN) or stable diffusion (SD). GAN-based approaches using CNNs or Transformers struggle to jointly capture local and global dependencies, leading to artifacts and disharmonious patterns. SD-based methods reduce such issues but often fail to preserve content structures and suffer from slow inference. To address these issues, we revisit GAN and propose a mamba-based generator, termed as StyMam, to produce high-quality stylized images without introducing artifacts and disharmonious patterns. Specifically, we introduce a mamba-based generator with a residual dual-path strip scanning mechanism and a channel-reweighted spatial attention module. The former efficiently captures local texture features, while the latter models global dependencies. Finally, extensive qualitative and quantitative experiments demonstrate that the proposed method outperforms state-of-the-art algorithms in both quality and speed.
Abstract:Multi-subject video generation aims to synthesize videos from textual prompts and multiple reference images, ensuring that each subject preserves natural scale and visual fidelity. However, current methods face two challenges: scale inconsistency, where variations in subject size lead to unnatural generation, and permutation sensitivity, where the order of reference inputs causes subject distortion. In this paper, we propose MoFu, a unified framework that tackles both challenges. For scale inconsistency, we introduce Scale-Aware Modulation (SMO), an LLM-guided module that extracts implicit scale cues from the prompt and modulates features to ensure consistent subject sizes. To address permutation sensitivity, we present a simple yet effective Fourier Fusion strategy that processes the frequency information of reference features via the Fast Fourier Transform to produce a unified representation. Besides, we design a Scale-Permutation Stability Loss to jointly encourage scale-consistent and permutation-invariant generation. To further evaluate these challenges, we establish a dedicated benchmark with controlled variations in subject scale and reference permutation. Extensive experiments demonstrate that MoFu significantly outperforms existing methods in preserving natural scale, subject fidelity, and overall visual quality.
Abstract:Personalized image generation is crucial for improving the user experience, as it renders reference images into preferred ones according to user visual preferences. Although effective, existing methods face two main issues. First, existing methods treat all items in the user historical sequence equally when extracting user preferences, overlooking the varying semantic similarities between historical items and the reference item. Disproportionately high weights for low-similarity items distort users' visual preferences for the reference item. Second, existing methods heavily rely on consistency between generated and reference images to optimize the generation, which leads to underfitting user preferences and hinders personalization. To address these issues, we propose Retrieval Augment Personalized Image GenerAtion guided by Recommendation (RAGAR). Our approach uses a retrieval mechanism to assign different weights to historical items according to their similarities to the reference item, thereby extracting more refined users' visual preferences for the reference item. Then we introduce a novel rank task based on the multi-modal ranking model to optimize the personalization of the generated images instead of forcing depend on consistency. Extensive experiments and human evaluations on three real-world datasets demonstrate that RAGAR achieves significant improvements in both personalization and semantic metrics compared to five baselines.