Alert button
Picture for Giulio Romualdi

Giulio Romualdi

Alert button

UKF-Based Sensor Fusion for Joint-Torque Sensorless Humanoid Robots

Add code
Bookmark button
Alert button
Feb 28, 2024
Ines Sorrentino, Giulio Romualdi, Daniele Pucci

Viaarxiv icon

Online Non-linear Centroidal MPC for Humanoid Robots Payload Carrying with Contact-Stable Force Parametrization

Add code
Bookmark button
Alert button
May 18, 2023
Mohamed Elobaid, Giulio Romualdi, Gabriele Nava, Lorenzo Rapetti, Hosameldin Awadalla Omer Mohamed, Daniele Pucci

Figure 1 for Online Non-linear Centroidal MPC for Humanoid Robots Payload Carrying with Contact-Stable Force Parametrization
Figure 2 for Online Non-linear Centroidal MPC for Humanoid Robots Payload Carrying with Contact-Stable Force Parametrization
Figure 3 for Online Non-linear Centroidal MPC for Humanoid Robots Payload Carrying with Contact-Stable Force Parametrization
Figure 4 for Online Non-linear Centroidal MPC for Humanoid Robots Payload Carrying with Contact-Stable Force Parametrization
Viaarxiv icon

Whole-Body Trajectory Optimization for Robot Multimodal Locomotion

Add code
Bookmark button
Alert button
Nov 23, 2022
Giuseppe L'Erario, Gabriele Nava, Giulio Romualdi, Fabio Bergonti, Valentino Razza, Stefano Dafarra, Daniele Pucci

Figure 1 for Whole-Body Trajectory Optimization for Robot Multimodal Locomotion
Figure 2 for Whole-Body Trajectory Optimization for Robot Multimodal Locomotion
Figure 3 for Whole-Body Trajectory Optimization for Robot Multimodal Locomotion
Figure 4 for Whole-Body Trajectory Optimization for Robot Multimodal Locomotion
Viaarxiv icon

Dynamic Complementarity Conditions and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion

Add code
Bookmark button
Alert button
Jul 07, 2022
Stefano Dafarra, Giulio Romualdi, Daniele Pucci

Figure 1 for Dynamic Complementarity Conditions and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion
Figure 2 for Dynamic Complementarity Conditions and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion
Figure 3 for Dynamic Complementarity Conditions and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion
Figure 4 for Dynamic Complementarity Conditions and Whole-Body Trajectory Optimization for Humanoid Robot Locomotion
Viaarxiv icon

iCub3 Avatar System

Add code
Bookmark button
Alert button
Mar 14, 2022
Stefano Dafarra, Kourosh Darvish, Riccardo Grieco, Gianluca Milani, Ugo Pattacini, Lorenzo Rapetti, Giulio Romualdi, Mattia Salvi, Alessandro Scalzo, Ines Sorrentino, Davide Tomè, Silvio Traversaro, Enrico Valli, Paolo Maria Viceconte, Giorgio Metta, Marco Maggiali, Daniele Pucci

Figure 1 for iCub3 Avatar System
Figure 2 for iCub3 Avatar System
Figure 3 for iCub3 Avatar System
Figure 4 for iCub3 Avatar System
Viaarxiv icon

Online Non-linear Centroidal MPC for Humanoid Robot Locomotion with Step Adjustment

Add code
Bookmark button
Alert button
Mar 10, 2022
Giulio Romualdi, Stefano Dafarra, Giuseppe L'Erario, Ines Sorrentino, Silvio Traversaro, Daniele Pucci

Figure 1 for Online Non-linear Centroidal MPC for Humanoid Robot Locomotion with Step Adjustment
Figure 2 for Online Non-linear Centroidal MPC for Humanoid Robot Locomotion with Step Adjustment
Figure 3 for Online Non-linear Centroidal MPC for Humanoid Robot Locomotion with Step Adjustment
Figure 4 for Online Non-linear Centroidal MPC for Humanoid Robot Locomotion with Step Adjustment
Viaarxiv icon

DILIGENT-KIO: A Proprioceptive Base Estimator for Humanoid Robots using Extended Kalman Filtering on Matrix Lie Groups

Add code
Bookmark button
Alert button
May 31, 2021
Prashanth Ramadoss, Giulio Romualdi, Stefano Dafarra, Francisco Javier Andrade Chavez, Silvio Traversaro, Daniele Pucci

Figure 1 for DILIGENT-KIO: A Proprioceptive Base Estimator for Humanoid Robots using Extended Kalman Filtering on Matrix Lie Groups
Figure 2 for DILIGENT-KIO: A Proprioceptive Base Estimator for Humanoid Robots using Extended Kalman Filtering on Matrix Lie Groups
Figure 3 for DILIGENT-KIO: A Proprioceptive Base Estimator for Humanoid Robots using Extended Kalman Filtering on Matrix Lie Groups
Figure 4 for DILIGENT-KIO: A Proprioceptive Base Estimator for Humanoid Robots using Extended Kalman Filtering on Matrix Lie Groups
Viaarxiv icon

Modeling of Visco-Elastic Environments for Humanoid Robot Motion Control

Add code
Bookmark button
Alert button
May 30, 2021
Giulio Romualdi, Stefano Dafarra, Daniele Pucci

Figure 1 for Modeling of Visco-Elastic Environments for Humanoid Robot Motion Control
Figure 2 for Modeling of Visco-Elastic Environments for Humanoid Robot Motion Control
Figure 3 for Modeling of Visco-Elastic Environments for Humanoid Robot Motion Control
Figure 4 for Modeling of Visco-Elastic Environments for Humanoid Robot Motion Control
Viaarxiv icon

Whole-Body Walking Generation using Contact Parametrization: A Non-Linear Trajectory Optimization Approach

Add code
Bookmark button
Alert button
Mar 10, 2020
Stefano Dafarra, Giulio Romualdi, Giorgio Metta, Daniele Pucci

Figure 1 for Whole-Body Walking Generation using Contact Parametrization: A Non-Linear Trajectory Optimization Approach
Figure 2 for Whole-Body Walking Generation using Contact Parametrization: A Non-Linear Trajectory Optimization Approach
Figure 3 for Whole-Body Walking Generation using Contact Parametrization: A Non-Linear Trajectory Optimization Approach
Figure 4 for Whole-Body Walking Generation using Contact Parametrization: A Non-Linear Trajectory Optimization Approach
Viaarxiv icon

A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots

Add code
Bookmark button
Alert button
Nov 27, 2019
Giulio Romualdi, Stefano Dafarra, Yue Hu, Prashanth Ramadoss, Francisco Javier Andrade Chavez, Silvio Traversaro, Daniele Pucci

Figure 1 for A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots
Figure 2 for A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots
Figure 3 for A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots
Figure 4 for A Benchmarking of DCM Based Architectures for Position, Velocity and Torque Controlled Humanoid Robots
Viaarxiv icon