This paper presents a classification framework based on learnable data augmentation to tackle the One-Shot Unsupervised Domain Adaptation (OS-UDA) problem. OS-UDA is the most challenging setting in Domain Adaptation, as only one single unlabeled target sample is assumed to be available for model adaptation. Driven by such single sample, our method LearnAug-UDA learns how to augment source data, making it perceptually similar to the target. As a result, a classifier trained on such augmented data will generalize well for the target domain. To achieve this, we designed an encoder-decoder architecture that exploits a perceptual loss and style transfer strategies to augment the source data. Our method achieves state-of-the-art performance on two well-known Domain Adaptation benchmarks, DomainNet and VisDA. The project code is available at https://github.com/IIT-PAVIS/LearnAug-UDA
Wide-scale use of visual surveillance in public spaces puts individual privacy at stake while increasing resource consumption (energy, bandwidth, and computation). Neuromorphic vision sensors (event-cameras) have been recently considered a valid solution to the privacy issue because they do not capture detailed RGB visual information of the subjects in the scene. However, recent deep learning architectures have been able to reconstruct images from event cameras with high fidelity, reintroducing a potential threat to privacy for event-based vision applications. In this paper, we aim to anonymize event-streams to protect the identity of human subjects against such image reconstruction attacks. To achieve this, we propose an end-to-end network architecture jointly optimized for the twofold objective of preserving privacy and performing a downstream task such as person ReId. Our network learns to scramble events, enforcing the degradation of images recovered from the privacy attacker. In this work, we also bring to the community the first ever event-based person ReId dataset gathered to evaluate the performance of our approach. We validate our approach with extensive experiments and report results on the synthetic event data simulated from the publicly available SoftBio dataset and our proposed Event-ReId dataset.
Objects are crucial for understanding human-object interactions. By identifying the relevant objects, one can also predict potential future interactions or actions that may occur with these objects. In this paper, we study the problem of Short-Term Object interaction anticipation (STA) and propose NAOGAT (Next-Active-Object Guided Anticipation Transformer), a multi-modal end-to-end transformer network, that attends to objects in observed frames in order to anticipate the next-active-object (NAO) and, eventually, to guide the model to predict context-aware future actions. The task is challenging since it requires anticipating future action along with the object with which the action occurs and the time after which the interaction will begin, a.k.a. the time to contact (TTC). Compared to existing video modeling architectures for action anticipation, NAOGAT captures the relationship between objects and the global scene context in order to predict detections for the next active object and anticipate relevant future actions given these detections, leveraging the objects' dynamics to improve accuracy. One of the key strengths of our approach, in fact, is its ability to exploit the motion dynamics of objects within a given clip, which is often ignored by other models, and separately decoding the object-centric and motion-centric information. Through our experiments, we show that our model outperforms existing methods on two separate datasets, Ego4D and EpicKitchens-100 ("Unseen Set"), as measured by several additional metrics, such as time to contact, and next-active-object localization. The code will be available upon acceptance.
In this technical report, we describe the Guided-Attention mechanism based solution for the short-term anticipation (STA) challenge for the EGO4D challenge. It combines the object detections, and the spatiotemporal features extracted from video clips, enhancing the motion and contextual information, and further decoding the object-centric and motion-centric information to address the problem of STA in egocentric videos. For the challenge, we build our model on top of StillFast with Guided Attention applied on fast network. Our model obtains better performance on the validation set and also achieves state-of-the-art (SOTA) results on the challenge test set for EGO4D Short-Term Object Interaction Anticipation Challenge.
Short-term action anticipation (STA) in first-person videos is a challenging task that involves understanding the next active object interactions and predicting future actions. Existing action anticipation methods have primarily focused on utilizing features extracted from video clips, but often overlooked the importance of objects and their interactions. To this end, we propose a novel approach that applies a guided attention mechanism between the objects, and the spatiotemporal features extracted from video clips, enhancing the motion and contextual information, and further decoding the object-centric and motion-centric information to address the problem of STA in egocentric videos. Our method, GANO (Guided Attention for Next active Objects) is a multi-modal, end-to-end, single transformer-based network. The experimental results performed on the largest egocentric dataset demonstrate that GANO outperforms the existing state-of-the-art methods for the prediction of the next active object label, its bounding box location, the corresponding future action, and the time to contact the object. The ablation study shows the positive contribution of the guided attention mechanism compared to other fusion methods. Moreover, it is possible to improve the next active object location and class label prediction results of GANO by just appending the learnable object tokens with the region of interest embeddings.
In this paper, we introduce a novel framework for the challenging problem of One-Shot Unsupervised Domain Adaptation (OSUDA), which aims to adapt to a target domain with only a single unlabeled target sample. Unlike existing approaches that rely on large labeled source and unlabeled target data, our Target-driven One-Shot UDA (TOS-UDA) approach employs a learnable augmentation strategy guided by the target sample's style to align the source distribution with the target distribution. Our method consists of three modules: an augmentation module, a style alignment module, and a classifier. Unlike existing methods, our augmentation module allows for strong transformations of the source samples, and the style of the single target sample available is exploited to guide the augmentation by ensuring perceptual similarity. Furthermore, our approach integrates augmentation with style alignment, eliminating the need for separate pre-training on additional datasets. Our method outperforms or performs comparably to existing OS-UDA methods on the Digits and DomainNet benchmarks.
Existing Source-free Unsupervised Domain Adaptation (SUDA) approaches inherently exhibit catastrophic forgetting. Typically, models trained on a labeled source domain and adapted to unlabeled target data improve performance on the target while dropping performance on the source, which is not available during adaptation. In this study, our goal is to cope with the challenging problem of SUDA in a continual learning setting, i.e., adapting to the target(s) with varying distributional shifts while maintaining performance on the source. The proposed framework consists of two main stages: i) a SUDA model yielding cleaner target labels -- favoring good performance on target, and ii) a novel method for synthesizing class-conditioned source-style images by leveraging only the source model and pseudo-labeled target data as a prior. An extensive pool of experiments on major benchmarks, e.g., PACS, Visda-C, and DomainNet demonstrates that the proposed Continual SUDA (C-SUDA) framework enables preserving satisfactory performance on the source domain without exploiting the source data at all.
Standard Unsupervised Domain Adaptation (UDA) methods assume the availability of both source and target data during the adaptation. In this work, we investigate Source-free Unsupervised Domain Adaptation (SF-UDA), a specific case of UDA where a model is adapted to a target domain without access to source data. We propose a novel approach for the SF-UDA setting based on a loss reweighting strategy that brings robustness against the noise that inevitably affects the pseudo-labels. The classification loss is reweighted based on the reliability of the pseudo-labels that is measured by estimating their uncertainty. Guided by such reweighting strategy, the pseudo-labels are progressively refined by aggregating knowledge from neighbouring samples. Furthermore, a self-supervised contrastive framework is leveraged as a target space regulariser to enhance such knowledge aggregation. A novel negative pairs exclusion strategy is proposed to identify and exclude negative pairs made of samples sharing the same class, even in presence of some noise in the pseudo-labels. Our method outperforms previous methods on three major benchmarks by a large margin. We set the new SF-UDA state-of-the-art on VisDA-C and DomainNet with a performance gain of +1.8% on both benchmarks and on PACS with +12.3% in the single-source setting and +6.6% in multi-target adaptation. Additional analyses demonstrate that the proposed approach is robust to the noise, which results in significantly more accurate pseudo-labels compared to state-of-the-art approaches.