Abstract:In this study, we investigate using graph neural network (GNN) representations to enhance contextualized representations of pre-trained language models (PLMs) for keyphrase extraction from lengthy documents. We show that augmenting a PLM with graph embeddings provides a more comprehensive semantic understanding of words in a document, particularly for long documents. We construct a co-occurrence graph of the text and embed it using a graph convolutional network (GCN) trained on the task of edge prediction. We propose a graph-enhanced sequence tagging architecture that augments contextualized PLM embeddings with graph representations. Evaluating on benchmark datasets, we demonstrate that enhancing PLMs with graph embeddings outperforms state-of-the-art models on long documents, showing significant improvements in F1 scores across all the datasets. Our study highlights the potential of GNN representations as a complementary approach to improve PLM performance for keyphrase extraction from long documents.
Abstract:Identifying keyphrases (KPs) from text documents is a fundamental task in natural language processing and information retrieval. Vast majority of the benchmark datasets for this task are from the scientific domain containing only the document title and abstract information. This limits keyphrase extraction (KPE) and keyphrase generation (KPG) algorithms to identify keyphrases from human-written summaries that are often very short (approx 8 sentences). This presents three challenges for real-world applications: human-written summaries are unavailable for most documents, the documents are almost always long, and a high percentage of KPs are directly found beyond the limited context of title and abstract. Therefore, we release two extensive corpora mapping KPs of ~1.3M and ~100K scientific articles with their fully extracted text and additional metadata including publication venue, year, author, field of study, and citations for facilitating research on this real-world problem.
Abstract:We study the task of predicting a set of salient questions from a given paragraph without any prior knowledge of the precise answer. We make two main contributions. First, we propose a new method to evaluate a set of predicted questions against the set of references by using the Hungarian algorithm to assign predicted questions to references before scoring the assigned pairs. We show that our proposed evaluation strategy has better theoretical and practical properties compared to prior methods because it can properly account for the coverage of references. Second, we compare different strategies to utilize a pre-trained seq2seq model to generate and select a set of questions related to a given paragraph. The code is available.
Abstract:In this work, we explore how to learn task-specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (upto 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (upto 4.33 points in F1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition (NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks.
Abstract:In this paper, we study the importance of context in predicting the citation worthiness of sentences in scholarly articles. We formulate this problem as a sequence labeling task solved using a hierarchical BiLSTM model. We contribute a new benchmark dataset containing over two million sentences and their corresponding labels. We preserve the sentence order in this dataset and perform document-level train/test splits, which importantly allows incorporating contextual information in the modeling process. We evaluate the proposed approach on three benchmark datasets. Our results quantify the benefits of using context and contextual embeddings for citation worthiness. Lastly, through error analysis, we provide insights into cases where context plays an essential role in predicting citation worthiness.
Abstract:Code-switching is the communication phenomenon where speakers switch between different languages during a conversation. With the widespread adoption of conversational agents and chat platforms, code-switching has become an integral part of written conversations in many multi-lingual communities worldwide. This makes it essential to develop techniques for summarizing and understanding these conversations. Towards this objective, we introduce abstractive summarization of Hindi-English code-switched conversations and develop the first code-switched conversation summarization dataset - GupShup, which contains over 6,831 conversations in Hindi-English and their corresponding human-annotated summaries in English and Hindi-English. We present a detailed account of the entire data collection and annotation processes. We analyze the dataset using various code-switching statistics. We train state-of-the-art abstractive summarization models and report their performances using both automated metrics and human evaluation. Our results show that multi-lingual mBART and multi-view seq2seq models obtain the best performances on the new dataset
Abstract:In the era of MOOCs, online exams are taken by millions of candidates, where scoring short answers is an integral part. It becomes intractable to evaluate them by human graders. Thus, a generic automated system capable of grading these responses should be designed and deployed. In this paper, we present a fast, scalable, and accurate approach towards automated Short Answer Scoring (SAS). We propose and explain the design and development of a system for SAS, namely AutoSAS. Given a question along with its graded samples, AutoSAS can learn to grade that prompt successfully. This paper further lays down the features such as lexical diversity, Word2Vec, prompt, and content overlap that plays a pivotal role in building our proposed model. We also present a methodology for indicating the factors responsible for scoring an answer. The trained model is evaluated on an extensively used public dataset, namely Automated Student Assessment Prize Short Answer Scoring (ASAP-SAS). AutoSAS shows state-of-the-art performance and achieves better results by over 8% in some of the question prompts as measured by Quadratic Weighted Kappa (QWK), showing performance comparable to humans.
Abstract:This paper presents our submission to the SemEval 2020 - Task 10 on emphasis selection in written text. We approach this emphasis selection problem as a sequence labeling task where we represent the underlying text with various contextual embedding models. We also employ label distribution learning to account for annotator disagreements. We experiment with the choice of model architectures, trainability of layers, and different contextual embeddings. Our best performing architecture is an ensemble of different models, which achieved an overall matching score of 0.783, placing us 15th out of 31 participating teams. Lastly, we analyze the results in terms of parts of speech tags, sentence lengths, and word ordering.
Abstract:Twitter is a social media platform where users express opinions over a variety of issues. Posts offering grievances or complaints can be utilized by private/ public organizations to improve their service and promptly gauge a low-cost assessment. In this paper, we propose an iterative methodology which aims to identify complaint based posts pertaining to the transport domain. We perform comprehensive evaluations along with releasing a novel dataset for the research purposes.
Abstract:In this paper, we present a dataset containing 9,973 tweets related to the MeToo movement that were manually annotated for five different linguistic aspects: relevance, stance, hate speech, sarcasm, and dialogue acts. We present a detailed account of the data collection and annotation processes. The annotations have a very high inter-annotator agreement (0.79 to 0.93 k-alpha) due to the domain expertise of the annotators and clear annotation instructions. We analyze the data in terms of geographical distribution, label correlations, and keywords. Lastly, we present some potential use cases of this dataset. We expect this dataset would be of great interest to psycholinguists, socio-linguists, and computational linguists to study the discursive space of digitally mobilized social movements on sensitive issues like sexual harassment.