Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Meta-Gradients in Non-Stationary Environments


Sep 13, 2022
Jelena Luketina, Sebastian Flennerhag, Yannick Schroecker, David Abel, Tom Zahavy, Satinder Singh

* 16 pages, 9 figures, CoLLAs 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Theory of Abstraction in Reinforcement Learning


Mar 01, 2022
David Abel

* Doctoral Dissertation, Department of Computer Science, Brown University, 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

On the Expressivity of Markov Reward


Nov 01, 2021
David Abel, Will Dabney, Anna Harutyunyan, Mark K. Ho, Michael L. Littman, Doina Precup, Satinder Singh

* Accepted to NeurIPS 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Bad-Policy Density: A Measure of Reinforcement Learning Hardness


Oct 07, 2021
David Abel, Cameron Allen, Dilip Arumugam, D. Ellis Hershkowitz, Michael L. Littman, Lawson L. S. Wong

* Presented at the 2021 ICML Workshop on Reinforcement Learning Theory 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Control of mental representations in human planning


May 14, 2021
Mark K. Ho, David Abel, Carlos G. Correa, Michael L. Littman, Jonathan D. Cohen, Thomas L. Griffiths


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Revisiting Peng's Q($位$) for Modern Reinforcement Learning


Feb 27, 2021
Tadashi Kozuno, Yunhao Tang, Mark Rowland, R茅mi Munos, Steven Kapturowski, Will Dabney, Michal Valko, David Abel

* 26 pages, 7 figures, 2 tables 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

What can I do here? A Theory of Affordances in Reinforcement Learning


Jun 26, 2020
Khimya Khetarpal, Zafarali Ahmed, Gheorghe Comanici, David Abel, Doina Precup

* Thirty-seventh International Conference on Machine Learning (ICML 2020) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

The Efficiency of Human Cognition Reflects Planned Information Processing


Feb 13, 2020
Mark K. Ho, David Abel, Jonathan D. Cohen, Michael L. Littman, Thomas L. Griffiths

* 13 pg (incl. supplemental materials); included in Proceedings of the 34th AAAI Conference on Artificial Intelligence 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning State Abstractions for Transfer in Continuous Control


Feb 08, 2020
Kavosh Asadi, David Abel, Michael L. Littman


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Lipschitz Lifelong Reinforcement Learning


Jan 17, 2020
Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, Michael L. Littman

* Submitted to ICML 2020, 21 pages, 15 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>