Lily
Abstract:Time-unconditional generative models learn time-independent denoising vector fields. But without time conditioning, the same noisy input may correspond to multiple noise levels and different denoising directions, which interferes with the supervision signal. Inspired by distance field modeling, we propose Distance Marching, a new time-unconditional approach with two principled inference methods. Crucially, we design losses that focus on closer targets. This yields denoising directions better directed toward the data manifold. Across architectures, Distance Marching consistently improves FID by 13.5% on CIFAR-10 and ImageNet over recent time-unconditional baselines. For class-conditional ImageNet generation, despite removing time input, Distance Marching surpasses flow matching using our losses and inference methods. It achieves lower FID than flow matching's final performance using 60% of the sampling steps and 13.6% lower FID on average across backbone sizes. Moreover, our distance prediction is also helpful for early stopping during sampling and for OOD detection. We hope distance field modeling can serve as a principled lens for generative modeling.
Abstract:Neuron identification is a popular tool in mechanistic interpretability, aiming to uncover the human-interpretable concepts represented by individual neurons in deep networks. While algorithms such as Network Dissection and CLIP-Dissect achieve great empirical success, a rigorous theoretical foundation remains absent, which is crucial to enable trustworthy and reliable explanations. In this work, we observe that neuron identification can be viewed as the inverse process of machine learning, which allows us to derive guarantees for neuron explanations. Based on this insight, we present the first theoretical analysis of two fundamental challenges: (1) Faithfulness: whether the identified concept faithfully represents the neuron's underlying function and (2) Stability: whether the identification results are consistent across probing datasets. We derive generalization bounds for widely used similarity metrics (e.g. accuracy, AUROC, IoU) to guarantee faithfulness, and propose a bootstrap ensemble procedure that quantifies stability along with BE (Bootstrap Explanation) method to generate concept prediction sets with guaranteed coverage probability. Experiments on both synthetic and real data validate our theoretical results and demonstrate the practicality of our method, providing an important step toward trustworthy neuron identification.
Abstract:Large language models (LLMs) with Chain-of-Thought (CoT) reasoning have achieved strong performance across diverse tasks, including mathematics, coding, and general reasoning. A distinctive ability of these reasoning models is self-reflection: the ability to review and revise previous reasoning steps. While self-reflection enhances reasoning performance, it also increases inference cost. In this work, we study self-reflection through the lens of representation engineering. We segment the model's reasoning into steps, identify the steps corresponding to reflection, and extract a reflection direction in the latent space that governs this behavior. Using this direction, we propose a stepwise steering method that can control reflection frequency. We call our framework ReflCtrl. Our experiments show that (1) in many cases reflections are redundant, especially in stronger models (in our experiments, we can save up to 33.6 percent of reasoning tokens while preserving performance), and (2) the model's reflection behavior is highly correlated with an internal uncertainty signal, implying self-reflection may be controlled by the model's uncertainty.
Abstract:The pursuit of practical quantum utility on near-term quantum processors is critically challenged by their inherent noise. Quantum error mitigation (QEM) techniques are leading solutions to improve computation fidelity with relatively low qubit-overhead, while full-scale quantum error correction remains a distant goal. However, QEM techniques incur substantial measurement overheads, especially when applied to families of quantum circuits parameterized by classical inputs. Focusing on zero-noise extrapolation (ZNE), a widely adopted QEM technique, here we devise the surrogate-enabled ZNE (S-ZNE), which leverages classical learning surrogates to perform ZNE entirely on the classical side. Unlike conventional ZNE, whose measurement cost scales linearly with the number of circuits, S-ZNE requires only constant measurement overhead for an entire family of quantum circuits, offering superior scalability. Theoretical analysis indicates that S-ZNE achieves accuracy comparable to conventional ZNE in many practical scenarios, and numerical experiments on up to 100-qubit ground-state energy and quantum metrology tasks confirm its effectiveness. Our approach provides a template that can be effectively extended to other quantum error mitigation protocols, opening a promising path toward scalable error mitigation.
Abstract:Advancement in Large Language Models (LLMs) reasoning capabilities enables them to solve scientific problems with enhanced efficacy. Thereby, a high-quality benchmark for comprehensive and appropriate assessment holds significance, while existing ones either confront the risk of data contamination or lack involved disciplines. To be specific, due to the data source overlap of LLMs training and static benchmark, the keys or number pattern of answers inadvertently memorized (i.e. data contamination), leading to systematic overestimation of their reasoning capabilities, especially numerical reasoning. We propose SciDA, a multidisciplinary benchmark that consists exclusively of over 1k Olympic-level numerical computation problems, allowing randomized numerical initializations for each inference round to avoid reliance on fixed numerical patterns. We conduct a series of experiments with both closed-source and open-source top-performing LLMs, and it is observed that the performance of LLMs drop significantly under random numerical initialization. Thus, we provide truthful and unbiased assessments of the numerical reasoning capabilities of LLMs. The data is available at https://huggingface.co/datasets/m-a-p/SciDA
Abstract:Interpreting individual neurons or directions in activations space is an important component of mechanistic interpretability. As such, many algorithms have been proposed to automatically produce neuron explanations, but it is often not clear how reliable these explanations are, or which methods produce the best explanations. This can be measured via crowd-sourced evaluations, but they can often be noisy and expensive, leading to unreliable results. In this paper, we carefully analyze the evaluation pipeline and develop a cost-effective and highly accurate crowdsourced evaluation strategy. In contrast to previous human studies that only rate whether the explanation matches the most highly activating inputs, we estimate whether the explanation describes neuron activations across all inputs. To estimate this effectively, we introduce a novel application of importance sampling to determine which inputs are the most valuable to show to raters, leading to around 30x cost reduction compared to uniform sampling. We also analyze the label noise present in crowd-sourced evaluations and propose a Bayesian method to aggregate multiple ratings leading to a further ~5x reduction in number of ratings required for the same accuracy. Finally, we use these methods to conduct a large-scale study comparing the quality of neuron explanations produced by the most popular methods for two different vision models.
Abstract:Understanding the function of individual units in a neural network is an important building block for mechanistic interpretability. This is often done by generating a simple text explanation of the behavior of individual neurons or units. For these explanations to be useful, we must understand how reliable and truthful they are. In this work we unify many existing explanation evaluation methods under one mathematical framework. This allows us to compare existing evaluation metrics, understand the evaluation pipeline with increased clarity and apply existing statistical methods on the evaluation. In addition, we propose two simple sanity checks on the evaluation metrics and show that many commonly used metrics fail these tests and do not change their score after massive changes to the concept labels. Based on our experimental and theoretical results, we propose guidelines that future evaluations should follow and identify a set of reliable evaluation metrics.




Abstract:Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit
Abstract:Concept bottleneck models (CBM) aim to produce inherently interpretable models that rely on human-understandable concepts for their predictions. However, existing approaches to design interpretable generative models based on CBMs are not yet efficient and scalable, as they require expensive generative model training from scratch as well as real images with labor-intensive concept supervision. To address these challenges, we present two novel and low-cost methods to build interpretable generative models through post-hoc techniques and we name our approaches: concept-bottleneck autoencoder (CB-AE) and concept controller (CC). Our proposed approaches enable efficient and scalable training without the need of real data and require only minimal to no concept supervision. Additionally, our methods generalize across modern generative model families including generative adversarial networks and diffusion models. We demonstrate the superior interpretability and steerability of our methods on numerous standard datasets like CelebA, CelebA-HQ, and CUB with large improvements (average ~25%) over the prior work, while being 4-15x faster to train. Finally, a large-scale user study is performed to validate the interpretability and steerability of our methods.
Abstract:As deep neural networks(DNN) become increasingly prevalent, particularly in high-stakes areas such as autonomous driving and healthcare, the ability to detect incorrect predictions of models and intervene accordingly becomes crucial for safety. In this work, we investigate the detection of misclassified inputs for image classification models from the lens of adversarial perturbation: we propose to use robust radius (a.k.a. input-space margin) as a confidence metric and design two efficient estimation algorithms, RR-BS and RR-Fast, for misclassification detection. Furthermore, we design a training method called Radius Aware Training (RAT) to boost models' ability to identify mistakes. Extensive experiments show our method could achieve up to 29.3% reduction on AURC and 21.62% reduction in FPR@95TPR, compared with previous methods.