Alert button
Picture for Gaël Varoquaux

Gaël Varoquaux

Alert button

SODA

The Locality and Symmetry of Positional Encodings

Oct 19, 2023
Lihu Chen, Gaël Varoquaux, Fabian M. Suchanek

Positional Encodings (PEs) are used to inject word-order information into transformer-based language models. While they can significantly enhance the quality of sentence representations, their specific contribution to language models is not fully understood, especially given recent findings that various positional encodings are insensitive to word order. In this work, we conduct a systematic study of positional encodings in \textbf{Bidirectional Masked Language Models} (BERT-style) , which complements existing work in three aspects: (1) We uncover the core function of PEs by identifying two common properties, Locality and Symmetry; (2) We show that the two properties are closely correlated with the performances of downstream tasks; (3) We quantify the weakness of current PEs by introducing two new probing tasks, on which current PEs perform poorly. We believe that these results are the basis for developing better PEs for transformer-based language models. The code is available at \faGithub~ \url{https://github.com/tigerchen52/locality\_symmetry}

* Long Paper in Findings of EMNLP23 
Viaarxiv icon

Causal thinking for decision making on Electronic Health Records: why and how

Aug 03, 2023
Matthieu Doutreligne, Tristan Struja, Judith Abecassis, Claire Morgand, Leo Anthony Celi, Gaël Varoquaux

Figure 1 for Causal thinking for decision making on Electronic Health Records: why and how
Figure 2 for Causal thinking for decision making on Electronic Health Records: why and how
Figure 3 for Causal thinking for decision making on Electronic Health Records: why and how
Figure 4 for Causal thinking for decision making on Electronic Health Records: why and how

Accurate predictions, as with machine learning, may not suffice to provide optimal healthcare for every patient. Indeed, prediction can be driven by shortcuts in the data, such as racial biases. Causal thinking is needed for data-driven decisions. Here, we give an introduction to the key elements, focusing on routinely-collected data, electronic health records (EHRs) and claims data. Using such data to assess the value of an intervention requires care: temporal dependencies and existing practices easily confound the causal effect. We present a step-by-step framework to help build valid decision making from real-life patient records by emulating a randomized trial before individualizing decisions, eg with machine learning. Our framework highlights the most important pitfalls and considerations in analysing EHRs or claims data to draw causal conclusions. We illustrate the various choices in studying the effect of albumin on sepsis mortality in the Medical Information Mart for Intensive Care database (MIMIC-IV). We study the impact of various choices at every step, from feature extraction to causal-estimator selection. In a tutorial spirit, the code and the data are openly available.

Viaarxiv icon

Understanding metric-related pitfalls in image analysis validation

Feb 09, 2023
Annika Reinke, Minu D. Tizabi, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Carole H. Sudre, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Arriel Benis, Matthew Blaschko, Florian Büttner, M. Jorge Cardoso, Veronika Cheplygina, Jianxu Chen, Evangelia Christodoulou, Beth A. Cimini, Gary S. Collins, Keyvan Farahani, Luciana Ferrer, Adrian Galdran, Bram van Ginneken, Ben Glocker, Patrick Godau, Robert Haase, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Fabian Isensee, Pierre Jannin, Charles E. Kahn, Dagmar Kainmueller, Bernhard Kainz, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Jens Kleesiek, Florian Kofler, Thijs Kooi, Annette Kopp-Schneider, Michal Kozubek, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, Karel G. M. Moons, Henning Müller, Brennan Nichyporuk, Felix Nickel, Jens Petersen, Susanne M. Rafelski, Nasir Rajpoot, Mauricio Reyes, Michael A. Riegler, Nicola Rieke, Julio Saez-Rodriguez, Clara I. Sánchez, Shravya Shetty, Maarten van Smeden, Ronald M. Summers, Abdel A. Taha, Aleksei Tiulpin, Sotirios A. Tsaftaris, Ben Van Calster, Gaël Varoquaux, Manuel Wiesenfarth, Ziv R. Yaniv, Paul F. Jäger, Lena Maier-Hein

Figure 1 for Understanding metric-related pitfalls in image analysis validation
Figure 2 for Understanding metric-related pitfalls in image analysis validation
Figure 3 for Understanding metric-related pitfalls in image analysis validation
Figure 4 for Understanding metric-related pitfalls in image analysis validation

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Viaarxiv icon

GLADIS: A General and Large Acronym Disambiguation Benchmark

Feb 03, 2023
Lihu Chen, Gaël Varoquaux, Fabian M. Suchanek

Figure 1 for GLADIS: A General and Large Acronym Disambiguation Benchmark
Figure 2 for GLADIS: A General and Large Acronym Disambiguation Benchmark
Figure 3 for GLADIS: A General and Large Acronym Disambiguation Benchmark
Figure 4 for GLADIS: A General and Large Acronym Disambiguation Benchmark

Acronym Disambiguation (AD) is crucial for natural language understanding on various sources, including biomedical reports, scientific papers, and search engine queries. However, existing acronym disambiguation benchmarks and tools are limited to specific domains, and the size of prior benchmarks is rather small. To accelerate the research on acronym disambiguation, we construct a new benchmark named GLADIS with three components: (1) a much larger acronym dictionary with 1.5M acronyms and 6.4M long forms; (2) a pre-training corpus with 160 million sentences; (3) three datasets that cover the general, scientific, and biomedical domains. We then pre-train a language model, \emph{AcroBERT}, on our constructed corpus for general acronym disambiguation, and show the challenges and values of our new benchmark.

* EACL 23 
Viaarxiv icon

Beyond calibration: estimating the grouping loss of modern neural networks

Oct 28, 2022
Alexandre Perez-Lebel, Marine Le Morvan, Gaël Varoquaux

Figure 1 for Beyond calibration: estimating the grouping loss of modern neural networks
Figure 2 for Beyond calibration: estimating the grouping loss of modern neural networks
Figure 3 for Beyond calibration: estimating the grouping loss of modern neural networks
Figure 4 for Beyond calibration: estimating the grouping loss of modern neural networks

Good decision making requires machine-learning models to provide trustworthy confidence scores. To this end, recent work has focused on miscalibration, i.e, the over or under confidence of model scores. Yet, contrary to widespread belief, calibration is not enough: even a classifier with the best possible accuracy and perfect calibration can have confidence scores far from the true posterior probabilities. This is due to the grouping loss, created by samples with the same confidence scores but different true posterior probabilities. Proper scoring rule theory shows that given the calibration loss, the missing piece to characterize individual errors is the grouping loss. While there are many estimators of the calibration loss, none exists for the grouping loss in standard settings. Here, we propose an estimator to approximate the grouping loss. We use it to study modern neural network architectures in vision and NLP. We find that the grouping loss varies markedly across architectures, and that it is a key model-comparison factor across the most accurate, calibrated, models. We also show that distribution shifts lead to high grouping loss.

Viaarxiv icon

Why do tree-based models still outperform deep learning on tabular data?

Jul 18, 2022
Léo Grinsztajn, Edouard Oyallon, Gaël Varoquaux

Figure 1 for Why do tree-based models still outperform deep learning on tabular data?
Figure 2 for Why do tree-based models still outperform deep learning on tabular data?
Figure 3 for Why do tree-based models still outperform deep learning on tabular data?
Figure 4 for Why do tree-based models still outperform deep learning on tabular data?

While deep learning has enabled tremendous progress on text and image datasets, its superiority on tabular data is not clear. We contribute extensive benchmarks of standard and novel deep learning methods as well as tree-based models such as XGBoost and Random Forests, across a large number of datasets and hyperparameter combinations. We define a standard set of 45 datasets from varied domains with clear characteristics of tabular data and a benchmarking methodology accounting for both fitting models and finding good hyperparameters. Results show that tree-based models remain state-of-the-art on medium-sized data ($\sim$10K samples) even without accounting for their superior speed. To understand this gap, we conduct an empirical investigation into the differing inductive biases of tree-based models and Neural Networks (NNs). This leads to a series of challenges which should guide researchers aiming to build tabular-specific NNs: 1. be robust to uninformative features, 2. preserve the orientation of the data, and 3. be able to easily learn irregular functions. To stimulate research on tabular architectures, we contribute a standard benchmark and raw data for baselines: every point of a 20 000 compute hours hyperparameter search for each learner.

Viaarxiv icon

Metrics reloaded: Pitfalls and recommendations for image analysis validation

Jun 03, 2022
Lena Maier-Hein, Annika Reinke, Evangelia Christodoulou, Ben Glocker, Patrick Godau, Fabian Isensee, Jens Kleesiek, Michal Kozubek, Mauricio Reyes, Michael A. Riegler, Manuel Wiesenfarth, Michael Baumgartner, Matthias Eisenmann, Doreen Heckmann-Nötzel, A. Emre Kavur, Tim Rädsch, Minu D. Tizabi, Laura Acion, Michela Antonelli, Tal Arbel, Spyridon Bakas, Peter Bankhead, Arriel Benis, M. Jorge Cardoso, Veronika Cheplygina, Beth Cimini, Gary S. Collins, Keyvan Farahani, Bram van Ginneken, Daniel A. Hashimoto, Michael M. Hoffman, Merel Huisman, Pierre Jannin, Charles E. Kahn, Alexandros Karargyris, Alan Karthikesalingam, Hannes Kenngott, Annette Kopp-Schneider, Anna Kreshuk, Tahsin Kurc, Bennett A. Landman, Geert Litjens, Amin Madani, Klaus Maier-Hein, Anne L. Martel, Peter Mattson, Erik Meijering, Bjoern Menze, David Moher, Karel G. M. Moons, Henning Müller, Felix Nickel, Brennan Nichyporuk, Jens Petersen, Nasir Rajpoot, Nicola Rieke, Julio Saez-Rodriguez, Clarisa Sánchez Gutiérrez, Shravya Shetty, Maarten van Smeden, Carole H. Sudre, Ronald M. Summers, Abdel A. Taha, Sotirios A. Tsaftaris, Ben Van Calster, Gaël Varoquaux, Paul F. Jäger

Figure 1 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 2 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 3 for Metrics reloaded: Pitfalls and recommendations for image analysis validation
Figure 4 for Metrics reloaded: Pitfalls and recommendations for image analysis validation

The field of automatic biomedical image analysis crucially depends on robust and meaningful performance metrics for algorithm validation. Current metric usage, however, is often ill-informed and does not reflect the underlying domain interest. Here, we present a comprehensive framework that guides researchers towards choosing performance metrics in a problem-aware manner. Specifically, we focus on biomedical image analysis problems that can be interpreted as a classification task at image, object or pixel level. The framework first compiles domain interest-, target structure-, data set- and algorithm output-related properties of a given problem into a problem fingerprint, while also mapping it to the appropriate problem category, namely image-level classification, semantic segmentation, instance segmentation, or object detection. It then guides users through the process of selecting and applying a set of appropriate validation metrics while making them aware of potential pitfalls related to individual choices. In this paper, we describe the current status of the Metrics Reloaded recommendation framework, with the goal of obtaining constructive feedback from the image analysis community. The current version has been developed within an international consortium of more than 60 image analysis experts and will be made openly available as a user-friendly toolkit after community-driven optimization.

* Shared first authors: Lena Maier-Hein, Annika Reinke. arXiv admin note: substantial text overlap with arXiv:2104.05642 
Viaarxiv icon

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Mar 21, 2022
Lihu Chen, Gaël Varoquaux, Fabian M. Suchanek

Figure 1 for Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost
Figure 2 for Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost
Figure 3 for Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost
Figure 4 for Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

State-of-the-art NLP systems represent inputs with word embeddings, but these are brittle when faced with Out-of-Vocabulary (OOV) words. To address this issue, we follow the principle of mimick-like models to generate vectors for unseen words, by learning the behavior of pre-trained embeddings using only the surface form of words. We present a simple contrastive learning framework, LOVE, which extends the word representation of an existing pre-trained language model (such as BERT), and makes it robust to OOV with few additional parameters. Extensive evaluations demonstrate that our lightweight model achieves similar or even better performances than prior competitors, both on original datasets and on corrupted variants. Moreover, it can be used in a plug-and-play fashion with FastText and BERT, where it significantly improves their robustness.

* Long paper accepted by ACL main conference. 17 pages 
Viaarxiv icon

Benchmarking missing-values approaches for predictive models on health databases

Feb 17, 2022
Alexandre Perez-Lebel, Gaël Varoquaux, Marine Le Morvan, Julie Josse, Jean-Baptiste Poline

Figure 1 for Benchmarking missing-values approaches for predictive models on health databases
Figure 2 for Benchmarking missing-values approaches for predictive models on health databases
Figure 3 for Benchmarking missing-values approaches for predictive models on health databases
Figure 4 for Benchmarking missing-values approaches for predictive models on health databases

BACKGROUND: As databases grow larger, it becomes harder to fully control their collection, and they frequently come with missing values: incomplete observations. These large databases are well suited to train machine-learning models, for instance for forecasting or to extract biomarkers in biomedical settings. Such predictive approaches can use discriminative -- rather than generative -- modeling, and thus open the door to new missing-values strategies. Yet existing empirical evaluations of strategies to handle missing values have focused on inferential statistics. RESULTS: Here we conduct a systematic benchmark of missing-values strategies in predictive models with a focus on large health databases: four electronic health record datasets, a population brain imaging one, a health survey and two intensive care ones. Using gradient-boosted trees, we compare native support for missing values with simple and state-of-the-art imputation prior to learning. We investigate prediction accuracy and computational time. For prediction after imputation, we find that adding an indicator to express which values have been imputed is important, suggesting that the data are missing not at random. Elaborate missing values imputation can improve prediction compared to simple strategies but requires longer computational time on large data. Learning trees that model missing values-with missing incorporated attribute-leads to robust, fast, and well-performing predictive modeling. CONCLUSIONS: Native support for missing values in supervised machine learning predicts better than state-of-the-art imputation with much less computational cost. When using imputation, it is important to add indicator columns expressing which values have been imputed.

* GigaScience, Oxford Univ Press, In press 
Viaarxiv icon