Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Incorporating Real-world Noisy Speech in Neural-network-based Speech Enhancement Systems

Sep 21, 2021
Yangyang Xia, Buye Xu, Anurag Kumar

Supervised speech enhancement relies on parallel databases of degraded speech signals and their clean reference signals during training. This setting prohibits the use of real-world degraded speech data that may better represent the scenarios where such systems are used. In this paper, we explore methods that enable supervised speech enhancement systems to train on real-world degraded speech data. Specifically, we propose a semi-supervised approach for speech enhancement in which we first train a modified vector-quantized variational autoencoder that solves a source separation task. We then use this trained autoencoder to further train an enhancement network using real-world noisy speech data by computing a triplet-based unsupervised loss function. Experiments show promising results for incorporating real-world data in training speech enhancement systems.

  Access Paper or Ask Questions

Almost Unsupervised Text to Speech and Automatic Speech Recognition

May 22, 2019
Yi Ren, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, Tie-Yan Liu

Text to speech (TTS) and automatic speech recognition (ASR) are two dual tasks in speech processing and both achieve impressive performance thanks to the recent advance in deep learning and large amount of aligned speech and text data. However, the lack of aligned data poses a major practical problem for TTS and ASR on low-resource languages. In this paper, by leveraging the dual nature of the two tasks, we propose an almost unsupervised learning method that only leverages few hundreds of paired data and extra unpaired data for TTS and ASR. Our method consists of the following components: (1) a denoising auto-encoder, which reconstructs speech and text sequences respectively to develop the capability of language modeling both in speech and text domain; (2) dual transformation, where the TTS model transforms the text $y$ into speech $\hat{x}$, and the ASR model leverages the transformed pair $(\hat{x},y)$ for training, and vice versa, to boost the accuracy of the two tasks; (3) bidirectional sequence modeling, which addresses error propagation especially in the long speech and text sequence when training with few paired data; (4) a unified model structure, which combines all the above components for TTS and ASR based on Transformer model. Our method achieves 99.84% in terms of word level intelligible rate and 2.68 MOS for TTS, and 11.7% PER for ASR on LJSpeech dataset, by leveraging only 200 paired speech and text data (about 20 minutes audio), together with extra unpaired speech and text data.

* Accepted by ICML2019 

  Access Paper or Ask Questions

Training Neural Speech Recognition Systems with Synthetic Speech Augmentation

Nov 02, 2018
Jason Li, Ravi Gadde, Boris Ginsburg, Vitaly Lavrukhin

Building an accurate automatic speech recognition (ASR) system requires a large dataset that contains many hours of labeled speech samples produced by a diverse set of speakers. The lack of such open free datasets is one of the main issues preventing advancements in ASR research. To address this problem, we propose to augment a natural speech dataset with synthetic speech. We train very large end-to-end neural speech recognition models using the LibriSpeech dataset augmented with synthetic speech. These new models achieve state of the art Word Error Rate (WER) for character-level based models without an external language model.

* Pre-print. Work in progress, 5 pages, 1 figure 

  Access Paper or Ask Questions

Speech frame implementation for speech analysis and recognition

Dec 15, 2021
A. A. Konev, V. S. Khlebnikov, A. Yu. Yakimuk

Distinctive features of the created speech frame are: the ability to take into account the emotional state of the speaker, sup-port for working with diseases of the speech-forming tract of speakers and the presence of manual segmentation of a num-ber of speech signals. In addition, the system is focused on Russian-language speech material, unlike most analogs.

* 7 pages, 27 tables 

  Access Paper or Ask Questions

Translatotron 2: Robust direct speech-to-speech translation

Jul 29, 2021
Ye Jia, Michelle Tadmor Ramanovich, Tal Remez, Roi Pomerantz

We present Translatotron 2, a neural direct speech-to-speech translation model that can be trained end-to-end. Translatotron 2 consists of a speech encoder, a phoneme decoder, a mel-spectrogram synthesizer, and an attention module that connects all the previous three components. Experimental results suggest that Translatotron 2 outperforms the original Translatotron by a large margin in terms of translation quality and predicted speech naturalness, and drastically improves the robustness of the predicted speech by mitigating over-generation, such as babbling or long pause. We also propose a new method for retaining the source speaker's voice in the translated speech. The trained model is restricted to retain the source speaker's voice, and unlike the original Translatotron, it is not able to generate speech in a different speaker's voice, making the model more robust for production deployment, by mitigating potential misuse for creating spoofing audio artifacts. When the new method is used together with a simple concatenation-based data augmentation, the trained Translatotron 2 model is able to retain each speaker's voice for input with speaker turns.

  Access Paper or Ask Questions

Polish Read Speech Corpus for Speech Tools and Services

Jun 01, 2017
Danijel Koržinek, Krzysztof Marasek, Łukasz Brocki, Krzysztof Wołk

This paper describes the speech processing activities conducted at the Polish consortium of the CLARIN project. The purpose of this segment of the project was to develop specific tools that would allow for automatic and semi-automatic processing of large quantities of acoustic speech data. The tools include the following: grapheme-to-phoneme conversion, speech-to-text alignment, voice activity detection, speaker diarization, keyword spotting and automatic speech transcription. Furthermore, in order to develop these tools, a large high-quality studio speech corpus was recorded and released under an open license, to encourage development in the area of Polish speech research. Another purpose of the corpus was to serve as a reference for studies in phonetics and pronunciation. All the tools and resources were released on the the Polish CLARIN website. This paper discusses the current status and future plans for the project.

  Access Paper or Ask Questions

Mandarin-English Code-switching Speech Recognition with Self-supervised Speech Representation Models

Oct 07, 2021
Liang-Hsuan Tseng, Yu-Kuan Fu, Heng-Jui Chang, Hung-yi Lee

Code-switching (CS) is common in daily conversations where more than one language is used within a sentence. The difficulties of CS speech recognition lie in alternating languages and the lack of transcribed data. Therefore, this paper uses the recently successful self-supervised learning (SSL) methods to leverage many unlabeled speech data without CS. We show that hidden representations of SSL models offer frame-level language identity even if the models are trained with English speech only. Jointly training CTC and language identification modules with self-supervised speech representations improves CS speech recognition performance. Furthermore, using multilingual speech data for pre-training obtains the best CS speech recognition.

* Submitted to ICASSP 2022 

  Access Paper or Ask Questions

Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement by Re-Synthesis

Mar 31, 2022
Karren Yang, Dejan Markovic, Steven Krenn, Vasu Agrawal, Alexander Richard

Since facial actions such as lip movements contain significant information about speech content, it is not surprising that audio-visual speech enhancement methods are more accurate than their audio-only counterparts. Yet, state-of-the-art approaches still struggle to generate clean, realistic speech without noise artifacts and unnatural distortions in challenging acoustic environments. In this paper, we propose a novel audio-visual speech enhancement framework for high-fidelity telecommunications in AR/VR. Our approach leverages audio-visual speech cues to generate the codes of a neural speech codec, enabling efficient synthesis of clean, realistic speech from noisy signals. Given the importance of speaker-specific cues in speech, we focus on developing personalized models that work well for individual speakers. We demonstrate the efficacy of our approach on a new audio-visual speech dataset collected in an unconstrained, large vocabulary setting, as well as existing audio-visual datasets, outperforming speech enhancement baselines on both quantitative metrics and human evaluation studies. Please see the supplemental video for qualitative results at

  Access Paper or Ask Questions