Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Extending Recurrent Neural Aligner for Streaming End-to-End Speech Recognition in Mandarin

Jun 17, 2018
Linhao Dong, Shiyu Zhou, Wei Chen, Bo Xu

End-to-end models have been showing superiority in Automatic Speech Recognition (ASR). At the same time, the capacity of streaming recognition has become a growing requirement for end-to-end models. Following these trends, an encoder-decoder recurrent neural network called Recurrent Neural Aligner (RNA) has been freshly proposed and shown its competitiveness on two English ASR tasks. However, it is not clear if RNA can be further improved and applied to other spoken language. In this work, we explore the applicability of RNA in Mandarin Chinese and present four effective extensions: In the encoder, we redesign the temporal down-sampling and introduce a powerful convolutional structure. In the decoder, we utilize a regularizer to smooth the output distribution and conduct joint training with a language model. On two Mandarin Chinese conversational telephone speech recognition (MTS) datasets, our Extended-RNA obtains promising performance. Particularly, it achieves 27.7% character error rate (CER), which is superior to current state-of-the-art result on the popular HKUST task.

* To appear in Interspeech 2018 

  Access Paper or Ask Questions

PercepNet+: A Phase and SNR Aware PercepNet for Real-Time Speech Enhancement

Mar 04, 2022
Xiaofeng Ge, Jiangyu Han, Yanhua Long, Haixin Guan

PercepNet, a recent extension of the RNNoise, an efficient, high-quality and real-time full-band speech enhancement technique, has shown promising performance in various public deep noise suppression tasks. This paper proposes a new approach, named PercepNet+, to further extend the PercepNet with four significant improvements. First, we introduce a phase-aware structure to leverage the phase information into PercepNet, by adding the complex features and complex subband gains as the deep network input and output respectively. Then, a signal-to-noise ratio (SNR) estimator and an SNR switched post-processing are specially designed to alleviate the over attenuation (OA) that appears in high SNR conditions of the original PercepNet. Moreover, the GRU layer is replaced by TF-GRU to model both temporal and frequency dependencies. Finally, we propose to integrate the loss of complex subband gain, SNR, pitch filtering strength, and an OA loss in a multi-objective learning manner to further improve the speech enhancement performance. Experimental results show that, the proposed PercepNet+ outperforms the original PercepNet significantly in terms of both PESQ and STOI, without increasing the model size too much.

* This article was submitted to Interspeech 2022 

  Access Paper or Ask Questions

Linguistic and Gender Variation in Speech Emotion Recognition using Spectral Features

Dec 17, 2021
Zachary Dair, Ryan Donovan, Ruairi O'Reilly

This work explores the effect of gender and linguistic-based vocal variations on the accuracy of emotive expression classification. Emotive expressions are considered from the perspective of spectral features in speech (Mel-frequency Cepstral Coefficient, Melspectrogram, Spectral Contrast). Emotions are considered from the perspective of Basic Emotion Theory. A convolutional neural network is utilised to classify emotive expressions in emotive audio datasets in English, German, and Italian. Vocal variations for spectral features assessed by (i) a comparative analysis identifying suitable spectral features, (ii) the classification performance for mono, multi and cross-lingual emotive data and (iii) an empirical evaluation of a machine learning model to assess the effects of gender and linguistic variation on classification accuracy. The results showed that spectral features provide a potential avenue for increasing emotive expression classification. Additionally, the accuracy of emotive expression classification was high within mono and cross-lingual emotive data, but poor in multi-lingual data. Similarly, there were differences in classification accuracy between gender populations. These results demonstrate the importance of accounting for population differences to enable accurate speech emotion recognition.

* Preprint for the AICS 2021 Conference - Machine Learning for Time Series Section This publication has emanated from research supported in part by a Grant from Science Foundation Ireland under Grant number 18/CRT/6222 12 Pages, 5 Figures 

  Access Paper or Ask Questions

Multimodal Semi-supervised Learning Framework for Punctuation Prediction in Conversational Speech

Aug 03, 2020
Monica Sunkara, Srikanth Ronanki, Dhanush Bekal, Sravan Bodapati, Katrin Kirchhoff

In this work, we explore a multimodal semi-supervised learning approach for punctuation prediction by learning representations from large amounts of unlabelled audio and text data. Conventional approaches in speech processing typically use forced alignment to encoder per frame acoustic features to word level features and perform multimodal fusion of the resulting acoustic and lexical representations. As an alternative, we explore attention based multimodal fusion and compare its performance with forced alignment based fusion. Experiments conducted on the Fisher corpus show that our proposed approach achieves ~6-9% and ~3-4% absolute improvement (F1 score) over the baseline BLSTM model on reference transcripts and ASR outputs respectively. We further improve the model robustness to ASR errors by performing data augmentation with N-best lists which achieves up to an additional ~2-6% improvement on ASR outputs. We also demonstrate the effectiveness of semi-supervised learning approach by performing ablation study on various sizes of the corpus. When trained on 1 hour of speech and text data, the proposed model achieved ~9-18% absolute improvement over baseline model.

* Accepted for Interspeech 2020 

  Access Paper or Ask Questions

Investigation on N-gram Approximated RNNLMs for Recognition of Morphologically Rich Speech

Jul 25, 2019
Balázs Tarján, György Szaszák, Tibor Fegyó, Péter Mihajlik

Recognition of Hungarian conversational telephone speech is challenging due to the informal style and morphological richness of the language. Recurrent Neural Network Language Model (RNNLM) can provide remedy for the high perplexity of the task; however, two-pass decoding introduces a considerable processing delay. In order to eliminate this delay we investigate approaches aiming at the complexity reduction of RNNLM, while preserving its accuracy. We compare the performance of conventional back-off n-gram language models (BNLM), BNLM approximation of RNNLMs (RNN-BNLM) and RNN n-grams in terms of perplexity and word error rate (WER). Morphological richness is often addressed by using statistically derived subwords - morphs - in the language models, hence our investigations are extended to morph-based models, as well. We found that using RNN-BNLMs 40% of the RNNLM perplexity reduction can be recovered, which is roughly equal to the performance of a RNN 4-gram model. Combining morph-based modeling and approximation of RNNLM, we were able to achieve 8% relative WER reduction and preserve real-time operation of our conversational telephone speech recognition system.

* 12 pages, 2 figures 

  Access Paper or Ask Questions

Don't shoot butterfly with rifles: Multi-channel Continuous Speech Separation with Early Exit Transformer

Oct 23, 2020
Sanyuan Chen, Yu Wu, Zhuo Chen, Takuya Yoshioka, Shujie Liu, Jinyu Li

With its strong modeling capacity that comes from a multi-head and multi-layer structure, Transformer is a very powerful model for learning a sequential representation and has been successfully applied to speech separation recently. However, multi-channel speech separation sometimes does not necessarily need such a heavy structure for all time frames especially when the cross-talker challenge happens only occasionally. For example, in conversation scenarios, most regions contain only a single active speaker, where the separation task downgrades to a single speaker enhancement problem. It turns out that using a very deep network structure for dealing with signals with a low overlap ratio not only negatively affects the inference efficiency but also hurts the separation performance. To deal with this problem, we propose an early exit mechanism, which enables the Transformer model to handle different cases with adaptive depth. Experimental results indicate that not only does the early exit mechanism accelerate the inference, but it also improves the accuracy.

  Access Paper or Ask Questions

Predicting score distribution to improve non-intrusive speech quality estimation

Apr 13, 2022
Abu Zaher Md Faridee, Hannes Gamper

Deep noise suppressors (DNS) have become an attractive solution to remove background noise, reverberation, and distortions from speech and are widely used in telephony/voice applications. They are also occasionally prone to introducing artifacts and lowering the perceptual quality of the speech. Subjective listening tests that use multiple human judges to derive a mean opinion score (MOS) are a popular way to measure these models' performance. Deep neural network based non-intrusive MOS estimation models have recently emerged as a popular cost-efficient alternative to these tests. These models are trained with only the MOS labels, often discarding the secondary statistics of the opinion scores. In this paper, we investigate several ways to integrate the distribution of opinion scores (e.g. variance, histogram information) to improve the MOS estimation performance. Our model is trained on a corpus of 419K denoised samples by 320 different DNS models and model variations and evaluated on 18K test samples from DNSMOS. We show that with very minor modification of a single task MOS estimation pipeline, these freely available labels can provide up to a 0.016 RMSE and 1% SRCC improvement.

* Submitted to Interspeech 2022 

  Access Paper or Ask Questions

Fusing information streams in end-to-end audio-visual speech recognition

Apr 19, 2021
Wentao Yu, Steffen Zeiler, Dorothea Kolossa

End-to-end acoustic speech recognition has quickly gained widespread popularity and shows promising results in many studies. Specifically the joint transformer/CTC model provides very good performance in many tasks. However, under noisy and distorted conditions, the performance still degrades notably. While audio-visual speech recognition can significantly improve the recognition rate of end-to-end models in such poor conditions, it is not obvious how to best utilize any available information on acoustic and visual signal quality and reliability in these models. We thus consider the question of how to optimally inform the transformer/CTC model of any time-variant reliability of the acoustic and visual information streams. We propose a new fusion strategy, incorporating reliability information in a decision fusion net that considers the temporal effects of the attention mechanism. This approach yields significant improvements compared to a state-of-the-art baseline model on the Lip Reading Sentences 2 and 3 (LRS2 and LRS3) corpus. On average, the new system achieves a relative word error rate reduction of 43% compared to the audio-only setup and 31% compared to the audiovisual end-to-end baseline.

* Published in International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021 
* 5 pages 

  Access Paper or Ask Questions

TeCANet: Temporal-Contextual Attention Network for Environment-Aware Speech Dereverberation

Mar 31, 2021
Helin Wang, Bo Wu, Lianwu Chen, Meng Yu, Jianwei Yu, Yong Xu, Shi-Xiong Zhang, Chao Weng, Dan Su, Dong Yu

In this paper, we exploit the effective way to leverage contextual information to improve the speech dereverberation performance in real-world reverberant environments. We propose a temporal-contextual attention approach on the deep neural network (DNN) for environment-aware speech dereverberation, which can adaptively attend to the contextual information. More specifically, a FullBand based Temporal Attention approach (FTA) is proposed, which models the correlations between the fullband information of the context frames. In addition, considering the difference between the attenuation of high frequency bands and low frequency bands (high frequency bands attenuate faster than low frequency bands) in the room impulse response (RIR), we also propose a SubBand based Temporal Attention approach (STA). In order to guide the network to be more aware of the reverberant environments, we jointly optimize the dereverberation network and the reverberation time (RT60) estimator in a multi-task manner. Our experimental results indicate that the proposed method outperforms our previously proposed reverberation-time-aware DNN and the learned attention weights are fully physical consistent. We also report a preliminary yet promising dereverberation and recognition experiment on real test data.

* Submitted to Interspeech 2021 

  Access Paper or Ask Questions