What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
May 30, 2025
Abstract:Multilingual speech processing with self-supervised or supervised pre-trained Speech Foundation Models (SFM) has achieved strong performance on tasks like Language Identification (LID) and Automatic Speech Recognition (ASR). However, these models struggle with limited resources during fine-tuning. This paper enhances multilingual LID and ASR on ML-SUPERB 2.0 by exploring multiple strategies for adapting SFMs, including frozen upstream training, partial fine-tuning, and low-rank adaptation. Furthermore, we employ data augmentation to mitigate performance gaps in few-shot settings and introduce LID Connectionist Temporal Classification (CTC) loss for regularization. Our approach achieves a 14% relative improvement in LID accuracy and a 30% relative reduction in ASR CER over the baseline on ML-SUPERB 2.0, securing second place in the Interspeech 2025 ML-SUPERB 2.0 Challenge.
Via

May 26, 2025
Abstract:Recent breakthroughs in Automatic Speech Recognition (ASR) have enabled fully automated Alzheimer's Disease (AD) detection using ASR transcripts. Nonetheless, the impact of ASR errors on AD detection remains poorly understood. This paper fills the gap. We conduct a comprehensive study on AD detection using transcripts from various ASR models and their synthesized speech on the ADReSS dataset. Experimental results reveal that certain ASR transcripts (ASR-synthesized speech) outperform manual transcripts (manual-synthesized speech) in detection accuracy, suggesting that ASR errors may provide valuable cues for improving AD detection. Additionally, we propose a cross-attention-based interpretability model that not only identifies these cues but also achieves superior or comparable performance to the baseline. Furthermore, we utilize this model to unveil AD-related patterns within pre-trained embeddings. Our study offers novel insights into the potential of ASR models for AD detection.
* Accepted by Interspeech 2025
Via

May 30, 2025
Abstract:This paper presents our system for the MISP-Meeting Challenge Track 2. The primary difficulty lies in the dataset, which contains strong background noise, reverberation, overlapping speech, and diverse meeting topics. To address these issues, we (a) designed G-SpatialNet, a speech enhancement (SE) model to improve Guided Source Separation (GSS) signals; (b) proposed TLS, a framework comprising time alignment, level alignment, and signal-to-noise ratio filtering, to generate signal-level pseudo labels for real-recorded far-field audio data, thereby facilitating SE models' training; and (c) explored fine-tuning strategies, data augmentation, and multimodal information to enhance the performance of pre-trained Automatic Speech Recognition (ASR) models in meeting scenarios. Finally, our system achieved character error rates (CERs) of 5.44% and 9.52% on the Dev and Eval sets, respectively, with relative improvements of 64.8% and 52.6% over the baseline, securing second place.
* Accepted by InterSpeech 2025
Via

May 29, 2025
Abstract:This paper presents a novel end-to-end LLM-empowered explainable speech emotion recognition (SER) approach. Fine-grained speech emotion descriptor (SED) features, e.g., pitch, tone and emphasis, are disentangled from HuBERT SSL representations via alternating LLM fine-tuning to joint SER-SED prediction and ASR tasks. VAE compressed HuBERT features derived via Information Bottleneck (IB) are used to adjust feature granularity. Experiments on the IEMOCAP and MELD benchmarks demonstrate that our approach consistently outperforms comparable LLaMA-based SER baselines, including those using either (a) alternating multi-task fine-tuning alone or (b) feature disentanglement only. Statistically significant increase of SER unweighted accuracy by up to 4.0% and 3.7% absolute (5.4% and 6.6% relative) are obtained. More importantly, emotion descriptors offer further explainability for SER.
* Accepted by INTERSPEECH2025
Via

May 30, 2025
Abstract:Although speech emotion recognition (SER) has advanced significantly with deep learning, annotation remains a major hurdle. Human annotation is not only costly but also subject to inconsistencies annotators often have different preferences and may lack the necessary contextual knowledge, which can lead to varied and inaccurate labels. Meanwhile, Large Language Models (LLMs) have emerged as a scalable alternative for annotating text data. However, the potential of LLMs to perform emotional speech data annotation without human supervision has yet to be thoroughly investigated. To address these problems, we apply GPT-4o to annotate a multimodal dataset collected from the sitcom Friends, using only textual cues as inputs. By crafting structured text prompts, our methodology capitalizes on the knowledge GPT-4o has accumulated during its training, showcasing that it can generate accurate and contextually relevant annotations without direct access to multimodal inputs. Therefore, we propose MELT, a multimodal emotion dataset fully annotated by GPT-4o. We demonstrate the effectiveness of MELT by fine-tuning four self-supervised learning (SSL) backbones and assessing speech emotion recognition performance across emotion datasets. Additionally, our subjective experiments\' results demonstrate a consistence performance improvement on SER.
Via

May 29, 2025
Abstract:This paper discusses the construction, fine-tuning, and deployment of BeaverTalk, a cascaded system for speech-to-text translation as part of the IWSLT 2025 simultaneous translation task. The system architecture employs a VAD segmenter for breaking a speech stream into segments, Whisper Large V2 for automatic speech recognition (ASR), and Gemma 3 12B for simultaneous translation. Regarding the simultaneous translation LLM, it is fine-tuned via low-rank adaptors (LoRAs) for a conversational prompting strategy that leverages a single prior-sentence memory bank from the source language as context. The cascaded system participated in the English$\rightarrow$German and English$\rightarrow$Chinese language directions for both the low and high latency regimes. In particular, on the English$\rightarrow$German task, the system achieves a BLEU of 24.64 and 27.83 at a StreamLAAL of 1837.86 and 3343.73, respectively. Then, on the English$\rightarrow$Chinese task, the system achieves a BLEU of 34.07 and 37.23 at a StreamLAAL of 2216.99 and 3521.35, respectively.
* Accepted at IWSLT 2025
Via

May 26, 2025
Abstract:Speech emotion recognition predicts a speaker's emotional state from speech signals using discrete labels or continuous dimensions such as arousal, valence, and dominance (VAD). We propose EmoSphere-SER, a joint model that integrates spherical VAD region classification to guide VAD regression for improved emotion prediction. In our framework, VAD values are transformed into spherical coordinates that are divided into multiple spherical regions, and an auxiliary classification task predicts which spherical region each point belongs to, guiding the regression process. Additionally, we incorporate a dynamic weighting scheme and a style pooling layer with multi-head self-attention to capture spectral and temporal dynamics, further boosting performance. This combined training strategy reinforces structured learning and improves prediction consistency. Experimental results show that our approach exceeds baseline methods, confirming the validity of the proposed framework.
* Proceedings of Interspeech 2025
Via

May 27, 2025
Abstract:Although Automatic Speech Recognition (ASR) systems have become an integral part of modern technology, their evaluation remains challenging, particularly for low-resource languages such as Persian. This paper introduces Persian Speech Recognition Benchmark(PSRB), a comprehensive benchmark designed to address this gap by incorporating diverse linguistic and acoustic conditions. We evaluate ten ASR systems, including state-of-the-art commercial and open-source models, to examine performance variations and inherent biases. Additionally, we conduct an in-depth analysis of Persian ASR transcriptions, identifying key error types and proposing a novel metric that weights substitution errors. This metric enhances evaluation robustness by reducing the impact of minor and partial errors, thereby improving the precision of performance assessment. Our findings indicate that while ASR models generally perform well on standard Persian, they struggle with regional accents, children's speech, and specific linguistic challenges. These results highlight the necessity of fine-tuning and incorporating diverse, representative training datasets to mitigate biases and enhance overall ASR performance. PSRB provides a valuable resource for advancing ASR research in Persian and serves as a framework for developing benchmarks in other low-resource languages. A subset of the PSRB dataset is publicly available at https://huggingface.co/datasets/PartAI/PSRB.
* 25 pages, 7 figures
Via

May 25, 2025
Abstract:Whisper fails to correctly transcribe dementia speech because persons with dementia (PwDs) often exhibit irregular speech patterns and disfluencies such as pauses, repetitions, and fragmented sentences. It was trained on standard speech and may have had little or no exposure to dementia-affected speech. However, correct transcription is vital for dementia speech for cost-effective diagnosis and the development of assistive technology. In this work, we fine-tune Whisper with the open-source dementia speech dataset (DementiaBank) and our in-house dataset to improve its word error rate (WER). The fine-tuning also includes filler words to ascertain the filler inclusion rate (FIR) and F1 score. The fine-tuned models significantly outperformed the off-the-shelf models. The medium-sized model achieved a WER of 0.24, outperforming previous work. Similarly, there was a notable generalisability to unseen data and speech patterns.
* Submitted to Interspeech 2025 (Accepted)
Via

May 27, 2025
Abstract:Topological data analysis (TDA) offers novel mathematical tools for deep learning. Inspired by Carlsson et al., this study designs topology-aware convolutional kernels that significantly improve speech recognition networks. Theoretically, by investigating orthogonal group actions on kernels, we establish a fiber-bundle decomposition of matrix spaces, enabling new filter generation methods. Practically, our proposed Orthogonal Feature (OF) layer achieves superior performance in phoneme recognition, particularly in low-noise scenarios, while demonstrating cross-domain adaptability. This work reveals TDA's potential in neural network optimization, opening new avenues for mathematics-deep learning interdisciplinary studies.
* 21 pages, 15 figures
Via
