Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"chatbots": models, code, and papers

Knowledge-Grounded Dialogue Flow Management for Social Robots and Conversational Agents

Aug 04, 2021
Lucrezia Grassi, Carmine Tommaso Recchiuto, Antonio Sgorbissa

The article proposes a system for knowledge-based conversation designed for Social Robots and other conversational agents. The proposed system relies on an Ontology for the description of all concepts that may be relevant conversation topics, as well as their mutual relationships. The article focuses on the algorithm for Dialogue Management that selects the most appropriate conversation topic depending on the user's input. Moreover, it discusses strategies to ensure a conversation flow that captures, as more coherently as possible, the user's intention to drive the conversation in specific directions while avoiding purely reactive responses to what the user says. To measure the quality of the conversation, the article reports the tests performed with 100 recruited participants, comparing five conversational agents: (i) an agent addressing dialogue flow management based only on the detection of keywords in the speech, (ii) an agent based both on the detection of keywords and the Content Classification feature of Google Cloud Natural Language, (iii) an agent that picks conversation topics randomly, (iv) a human pretending to be a chatbot, and (v) one of the most famous chatbots worldwide: Replika. The subjective perception of the participants is measured both with the SASSI (Subjective Assessment of Speech System Interfaces) tool, as well as with a custom survey for measuring the subjective perception of coherence.

* 21 pages, 20 figures 
  
Access Paper or Ask Questions

Conversations Are Not Flat: Modeling the Dynamic Information Flow across Dialogue Utterances

Jun 04, 2021
Zekang Li, Jinchao Zhang, Zhengcong Fei, Yang Feng, Jie Zhou

Nowadays, open-domain dialogue models can generate acceptable responses according to the historical context based on the large-scale pre-trained language models. However, they generally concatenate the dialogue history directly as the model input to predict the response, which we named as the flat pattern and ignores the dynamic information flow across dialogue utterances. In this work, we propose the DialoFlow model, in which we introduce a dynamic flow mechanism to model the context flow, and design three training objectives to capture the information dynamics across dialogue utterances by addressing the semantic influence brought about by each utterance in large-scale pre-training. Experiments on the multi-reference Reddit Dataset and DailyDialog Dataset demonstrate that our DialoFlow significantly outperforms the DialoGPT on the dialogue generation task. Besides, we propose the Flow score, an effective automatic metric for evaluating interactive human-bot conversation quality based on the pre-trained DialoFlow, which presents high chatbot-level correlation ($r=0.9$) with human ratings among 11 chatbots. Code and pre-trained models will be public. \footnote{\url{https://github.com/ictnlp/DialoFlow}}

* ACL2021 main conference (long paper) 
  
Access Paper or Ask Questions

An Ontology-Based Dialogue Management System for Banking and Finance Dialogue Systems

Apr 13, 2018
Duygu Altinok

Keeping the dialogue state in dialogue systems is a notoriously difficult task. We introduce an ontology-based dialogue manage(OntoDM), a dialogue manager that keeps the state of the conversation, provides a basis for anaphora resolution and drives the conversation via domain ontologies. The banking and finance area promises great potential for disambiguating the context via a rich set of products and specificity of proper nouns, named entities and verbs. We used ontologies both as a knowledge base and a basis for the dialogue manager; the knowledge base component and dialogue manager components coalesce in a sense. Domain knowledge is used to track Entities of Interest, i.e. nodes (classes) of the ontology which happen to be products and services. In this way we also introduced conversation memory and attention in a sense. We finely blended linguistic methods, domain-driven keyword ranking and domain ontologies to create ways of domain-driven conversation. Proposed framework is used in our in-house German language banking and finance chatbots. General challenges of German language processing and finance-banking domain chatbot language models and lexicons are also introduced. This work is still in progress, hence no success metrics have been introduced yet.

* 9 pages, 27 figures, goes to 1st Financial Narrative Processing Workshop @ LREC 7-12 May 2018, Miyazaki, Japan 
  
Access Paper or Ask Questions

End-to-End Natural Language Understanding Pipeline for Bangla Conversational Agents

Jul 15, 2021
Fahim Shahriar Khan, Mueeze Al Mushabbir, Mohammad Sabik Irbaz, MD Abdullah Al Nasim

Chatbots are intelligent software built to be used as a replacement for human interaction. However, existing studies typically do not provide enough support for low-resource languages like Bangla. Moreover, due to the increasing popularity of social media, we can also see the rise of interactions in Bangla transliteration (mostly in English) among the native Bangla speakers. In this paper, we propose a novel approach to build a Bangla chatbot aimed to be used as a business assistant which can communicate in Bangla and Bangla Transliteration in English with high confidence consistently. Since annotated data was not available for this purpose, we had to work on the whole machine learning life cycle (data preparation, machine learning modeling, and model deployment) using Rasa Open Source Framework, fastText embeddings, Polyglot embeddings, Flask, and other systems as building blocks. While working with the skewed annotated dataset, we try out different setups and pipelines to evaluate which works best and provide possible reasoning behind the observed results. Finally, we present a pipeline for intent classification and entity extraction which achieves reasonable performance (accuracy: 83.02%, precision: 80.82%, recall: 83.02%, F1-score: 80%).

* Under Review 
  
Access Paper or Ask Questions

A Unified Conversational Assistant Framework for Business Process Automation

Jan 07, 2020
Yara Rizk, Abhishek Bhandwalder, Scott Boag, Tathagata Chakraborti, Vatche Isahagian, Yasaman Khazaeni, Falk Pollock, Merve Unuvar

Business process automation is a booming multi-billion-dollar industry that promises to remove menial tasks from workers' plates -- through the introduction of autonomous agents -- and free up their time and brain power for more creative and engaging tasks. However, an essential component to the successful deployment of such autonomous agents is the ability of business users to monitor their performance and customize their execution. A simple and user-friendly interface with a low learning curve is necessary to increase the adoption of such agents in banking, insurance, retail and other domains. As a result, proactive chatbots will play a crucial role in the business automation space. Not only can they respond to users' queries and perform actions on their behalf but also initiate communication with the users to inform them of the system's behavior. This will provide business users a natural language interface to interact with, monitor and control autonomous agents. In this work, we present a multi-agent orchestration framework to develop such proactive chatbots by discussing the types of skills that can be composed into agents and how to orchestrate these agents. Two use cases on a travel preapproval business process and a loan application business process are adopted to qualitatively analyze the proposed framework based on four criteria: performance, coding overhead, scalability, and agent overlap.

  
Access Paper or Ask Questions

Building Advanced Dialogue Managers for Goal-Oriented Dialogue Systems

Jun 03, 2018
Vladimir Ilievski

Goal-Oriented (GO) Dialogue Systems, colloquially known as goal oriented chatbots, help users achieve a predefined goal (e.g. book a movie ticket) within a closed domain. A first step is to understand the user's goal by using natural language understanding techniques. Once the goal is known, the bot must manage a dialogue to achieve that goal, which is conducted with respect to a learnt policy. The success of the dialogue system depends on the quality of the policy, which is in turn reliant on the availability of high-quality training data for the policy learning method, for instance Deep Reinforcement Learning. Due to the domain specificity, the amount of available data is typically too low to allow the training of good dialogue policies. In this master thesis we introduce a transfer learning method to mitigate the effects of the low in-domain data availability. Our transfer learning based approach improves the bot's success rate by $20\%$ in relative terms for distant domains and we more than double it for close domains, compared to the model without transfer learning. Moreover, the transfer learning chatbots learn the policy up to 5 to 10 times faster. Finally, as the transfer learning approach is complementary to additional processing such as warm-starting, we show that their joint application gives the best outcomes.

* master thesis 
  
Access Paper or Ask Questions

Subword Semantic Hashing for Intent Classification on Small Datasets

Oct 16, 2018
Kumar Shridhar, Amit Sahu, Ayushman Dash, Pedro Alonso, Gustav Pihlgren, Vinay Pondeknath, Fotini Simistira, Marcus Liwicki

In this paper, we introduce the use of Semantic Hashing as embedding for the task of Intent Classification and outperform previous state-of-the-art methods on three frequently used benchmarks. Intent Classification on a small dataset is a challenging task for data-hungry state-of-the-art Deep Learning based systems. Semantic Hashing is an attempt to overcome such a challenge and learn robust text classification. Current word embedding based methods are dependent on vocabularies. One of the major drawbacks of such methods is out-of-vocabulary terms, especially when having small training datasets and using a wider vocabulary. This is the case in Intent Classification for chatbots, where typically small datasets are extracted from internet communication. Two problems arise by the use of internet communication. First, such datasets miss a lot of terms in the vocabulary to use word embeddings efficiently. Second, users frequently make spelling errors. Typically, the models for intent classification are not trained with spelling errors and it is difficult to think about ways in which users will make mistakes. Models depending on a word vocabulary will always face such issues. An ideal classifier should handle spelling errors inherently. With Semantic Hashing, we overcome these challenges and achieve state-of-the-art results on three datasets: AskUbuntu, Chatbot, and Web Application. Our benchmarks are available online: https://github.com/kumar-shridhar/Know-Your-Intent

  
Access Paper or Ask Questions

A Taxonomy of Empathetic Response Intents in Human Social Conversations

Dec 07, 2020
Anuradha Welivita, Pearl Pu

Open-domain conversational agents or chatbots are becoming increasingly popular in the natural language processing community. One of the challenges is enabling them to converse in an empathetic manner. Current neural response generation methods rely solely on end-to-end learning from large scale conversation data to generate dialogues. This approach can produce socially unacceptable responses due to the lack of large-scale quality data used to train the neural models. However, recent work has shown the promise of combining dialogue act/intent modelling and neural response generation. This hybrid method improves the response quality of chatbots and makes them more controllable and interpretable. A key element in dialog intent modelling is the development of a taxonomy. Inspired by this idea, we have manually labeled 500 response intents using a subset of a sizeable empathetic dialogue dataset (25K dialogues). Our goal is to produce a large-scale taxonomy for empathetic response intents. Furthermore, using lexical and machine learning methods, we automatically analysed both speaker and listener utterances of the entire dataset with identified response intents and 32 emotion categories. Finally, we use information visualization methods to summarize emotional dialogue exchange patterns and their temporal progression. These results reveal novel and important empathy patterns in human-human open-domain conversations and can serve as heuristics for hybrid approaches.

* In Proceedings of the 28th International Conference on Computational Linguistics (COLING 2020). 9 pages 
  
Access Paper or Ask Questions

A Qualitative Evaluation of Language Models on Automatic Question-Answering for COVID-19

Jun 23, 2020
David Oniani, Yanshan Wang

COVID-19 has resulted in an ongoing pandemic and as of 12 June 2020, has caused more than 7.4 million cases and over 418,000 deaths. The highly dynamic and rapidly evolving situation with COVID-19 has made it difficult to access accurate, on-demand information regarding the disease. Online communities, forums, and social media provide potential venues to search for relevant questions and answers, or post questions and seek answers from other members. However, due to the nature of such sites, there are always a limited number of relevant questions and responses to search from, and posted questions are rarely answered immediately. With the advancements in the field of natural language processing, particularly in the domain of language models, it has become possible to design chatbots that can automatically answer consumer questions. However, such models are rarely applied and evaluated in the healthcare domain, to meet the information needs with accurate and up-to-date healthcare data. In this paper, we propose to apply a language model for automatically answering questions related to COVID-19 and qualitatively evaluate the generated responses. We utilized the GPT-2 language model and applied transfer learning to retrain it on the COVID-19 Open Research Dataset (CORD-19) corpus. In order to improve the quality of the generated responses, we applied 4 different approaches, namely tf-idf, BERT, BioBERT, and USE to filter and retain relevant sentences in the responses. In the performance evaluation step, we asked two medical experts to rate the responses. We found that BERT and BioBERT, on average, outperform both tf-idf and USE in relevance-based sentence filtering tasks. Additionally, based on the chatbot, we created a user-friendly interactive web application to be hosted online.

  
Access Paper or Ask Questions
<<
6
7
8
9
10
11
12
13
14
15
16
17
18
>>