Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Large language models (LLMs) have made rapid progress in formal theorem proving, yet current benchmarks under-measure the kind of abstraction and library-mediated reasoning that organizes modern mathematics. In parallel with FATE's emphasis on frontier algebra, we introduce LeanCat, a Lean benchmark for category-theoretic formalization -- a unifying language for mathematical structure and a core layer of modern proof engineering -- serving as a stress test of structural, interface-level reasoning. Part I: 1-Categories contains 100 fully formalized statement-level tasks, curated into topic families and three difficulty tiers via an LLM-assisted + human grading process. The best model solves 8.25% of tasks at pass@1 (32.50%/4.17%/0.00% by Easy/Medium/High) and 12.00% at pass@4 (50.00%/4.76%/0.00%). We also evaluate LeanBridge which use LeanExplore to search Mathlib, and observe consistent gains over single-model baselines. LeanCat is intended as a compact, reusable checkpoint for tracking both AI and human progress toward reliable, research-level formalization in Lean.
Social media (SM) platforms (e.g. Facebook, Twitter, and Reddit) are increasingly leveraged to share opinions and emotions, specifically during challenging events, such as natural disasters, pandemics, and political elections, and joyful occasions like festivals and celebrations. Among the SM platforms, Reddit provides a unique space for its users to anonymously express their experiences and thoughts on sensitive issues such as health and daily life. In this work, we present a novel dataset, called NepEMO, for multi-label emotion (MLE) and sentiment classification (SC) on the Nepali subreddit post. We curate and build a manually annotated dataset of 4,462 posts (January 2019- June 2025) written in English, Romanised Nepali and Devanagari script for five emotions (fear, anger, sadness, joy, and depression) and three sentiment classes (positive, negative, and neutral). We perform a detailed analysis of posts to capture linguistic insights, including emotion trends, co-occurrence of emotions, sentiment-specific n-grams, and topic modelling using Latent Dirichlet Allocation and TF-IDF keyword extraction. Finally, we compare various traditional machine learning (ML), deep learning (DL), and transformer models for MLE and SC tasks. The result shows that transformer models consistently outperform the ML and DL models for both tasks.
Machine Learning (ML) has been a foundational topic in artificial intelligence (AI), providing both theoretical groundwork and practical tools for its exciting advancements. From ResNet for visual recognition to Transformer for vision-language alignment, the AI models have achieved superior capability to humans. Furthermore, the scaling law has enabled AI to initially develop general intelligence, as demonstrated by Large Language Models (LLMs). To this stage, AI has had an enormous influence on society and yet still keeps shaping the future for humanity. However, distribution shift remains a persistent ``Achilles' heel'', fundamentally limiting the reliability and general usefulness of ML systems. Moreover, generalization under distribution shift would also cause trust issues for AIs. Motivated by these challenges, my research focuses on \textit{Trustworthy Machine Learning under Distribution Shifts}, with the goal of expanding AI's robustness, versatility, as well as its responsibility and reliability. We carefully study the three common distribution shifts into: (1) Perturbation Shift, (2) Domain Shift, and (3) Modality Shift. For all scenarios, we also rigorously investigate trustworthiness via three aspects: (1) Robustness, (2) Explainability, and (3) Adaptability. Based on these dimensions, we propose effective solutions and fundamental insights, meanwhile aiming to enhance the critical ML problems, such as efficiency, adaptability, and safety.
Audiobook interpretations are attracting increasing attention, as they provide accessible and in-depth analyses of books that offer readers practical insights and intellectual inspiration. However, their manual creation process remains time-consuming and resource-intensive. To address this challenge, we propose AI4Reading, a multi-agent collaboration system leveraging large language models (LLMs) and speech synthesis technology to generate podcast, like audiobook interpretations. The system is designed to meet three key objectives: accurate content preservation, enhanced comprehensibility, and a logical narrative structure. To achieve these goals, we develop a framework composed of 11 specialized agents,including topic analysts, case analysts, editors, a narrator, and proofreaders that work in concert to explore themes, extract real world cases, refine content organization, and synthesize natural spoken language. By comparing expert interpretations with our system's output, the results show that although AI4Reading still has a gap in speech generation quality, the generated interpretative scripts are simpler and more accurate.
One-to-one tutoring is widely considered the gold standard for personalized education, yet it remains prohibitively expensive to scale. To evaluate whether generative AI might help expand access to this resource, we conducted an exploratory randomized controlled trial (RCT) with $N = 165$ students across five UK secondary schools. We integrated LearnLM -- a generative AI model fine-tuned for pedagogy -- into chat-based tutoring sessions on the Eedi mathematics platform. In the RCT, expert tutors directly supervised LearnLM, with the remit to revise each message it drafted until they would be satisfied sending it themselves. LearnLM proved to be a reliable source of pedagogical instruction, with supervising tutors approving 76.4% of its drafted messages making zero or minimal edits (i.e., changing only one or two characters). This translated into effective tutoring support: students guided by LearnLM performed at least as well as students chatting with human tutors on each learning outcome we measured. In fact, students who received support from LearnLM were 5.5 percentage points more likely to solve novel problems on subsequent topics (with a success rate of 66.2%) than those who received tutoring from human tutors alone (rate of 60.7%). In interviews, tutors highlighted LearnLM's strength at drafting Socratic questions that encouraged deeper reflection from students, with multiple tutors even reporting that they learned new pedagogical practices from the model. Overall, our results suggest that pedagogically fine-tuned AI tutoring systems may play a promising role in delivering effective, individualized learning support at scale.
Semantic text classification has undergone significant advances in recent years due to the rise of large language models (LLMs) and their high dimensional embeddings. While LLM-embeddings are frequently used to store and retrieve text by semantic similarity in vector databases, the global structure semantic relationships in text corpora often remains opaque. Herein we propose a nested density clustering approach, to infer hierarchical trees of semantically related texts. The method starts by identifying texts of strong semantic similarity as it searches for dense clusters in LLM embedding space. As the density criterion is gradually relaxed, these dense clusters merge into more diffuse clusters, until the whole dataset is represented by a single cluster -- the root of the tree. By embedding dense clusters into increasingly diffuse ones, we construct a tree structure that captures hierarchical semantic relationships among texts. We outline how this approach can be used to classify textual data for abstracts of scientific abstracts as a case study. This enables the data-driven discovery research areas and their subfields without predefined categories. To evaluate the general applicability of the method, we further apply it to established benchmark datasets such as the 20 Newsgroups and IMDB 50k Movie Reviews, demonstrating its robustness across domains. Finally we discuss possible applications on scientometrics, topic evolution, highlighting how nested density trees can reveal semantic structure and evolution in textual datasets.
Cognitive diagnosis is an essential research topic in intelligent education, aimed at assessing the level of mastery of different skills by students. So far, many research works have used deep learning models to explore the complex interactions between students, questions, and skills. However, the performance of existing method is frequently limited by the long-tailed distribution and dynamic changes in the data. To address these challenges, we propose a meta-learning framework for cognitive diagnosis based on continual learning (MetaCD). This framework can alleviate the long-tailed problem by utilizing meta-learning to learn the optimal initialization state, enabling the model to achieve good accuracy on new tasks with only a small amount of data. In addition, we utilize a continual learning method named parameter protection mechanism to give MetaCD the ability to adapt to new skills or new tasks, in order to adapt to dynamic changes in data. MetaCD can not only improve the plasticity of our model on a single task, but also ensure the stability and generalization of the model on sequential tasks. Comprehensive experiments on five real-world datasets show that MetaCD outperforms other baselines in both accuracy and generalization.
Theme detection is a fundamental task in user-centric dialogue systems, aiming to identify the latent topic of each utterance without relying on predefined schemas. Unlike intent induction, which operates within fixed label spaces, theme detection requires cross-dialogue consistency and alignment with personalized user preferences, posing significant challenges. Existing methods often struggle with sparse, short utterances for accurate topic representation and fail to capture user-level thematic preferences across dialogues. To address these challenges, we propose CATCH (Controllable Theme Detection with Contextualized Clustering and Hierarchical Generation), a unified framework that integrates three core components: (1) context-aware topic representation, which enriches utterance-level semantics using surrounding topic segments; (2) preference-guided topic clustering, which jointly models semantic proximity and personalized feedback to align themes across dialogue; and (3) a hierarchical theme generation mechanism designed to suppress noise and produce robust, coherent topic labels. Experiments on a multi-domain customer dialogue benchmark (DSTC-12) demonstrate the effectiveness of CATCH with 8B LLM in both theme clustering and topic generation quality.
Multi-annotator medical image segmentation is an important research problem, but requires annotated datasets that are expensive to collect. Dermoscopic skin lesion imaging allows human experts and AI systems to observe morphological structures otherwise not discernable from regular clinical photographs. However, currently there are no large-scale publicly available multi-annotator skin lesion segmentation (SLS) datasets with annotator-labels for dermoscopic skin lesion imaging. We introduce ISIC MultiAnnot++, a large public multi-annotator skin lesion segmentation dataset for images from the ISIC Archive. The final dataset contains 17,684 segmentation masks spanning 14,967 dermoscopic images, where 2,394 dermoscopic images have 2-5 segmentations per image, making it the largest publicly available SLS dataset. Further, metadata about the segmentation, including the annotators' skill level and segmentation tool, is included, enabling research on topics such as annotator-specific preference modeling for segmentation and annotator metadata analysis. We provide an analysis on the characteristics of this dataset, curated data partitions, and consensus segmentation masks.
Dialogue topic segmentation supports summarization, retrieval, memory management, and conversational continuity. Despite decades of work, evaluation practice remains dominated by strict boundary matching and F1-based metrics. Modern large language model (LLM) based conversational systems increasingly rely on segmentation to manage conversation history beyond fixed context windows. In such systems, unstructured context accumulation degrades efficiency and coherence. This paper introduces an evaluation framework that reports boundary density and segment alignment diagnostics (purity and coverage) alongside window-tolerant F1 (W-F1). By separating boundary scoring from boundary selection, we evaluate segmentation quality across density regimes rather than at a single operating point. Cross-dataset evaluation shows that reported performance differences often reflect annotation granularity mismatch rather than boundary placement quality alone. We evaluate structurally distinct segmentation strategies across eight dialogue datasets spanning task-oriented, open-domain, meeting-style, and synthetic interactions. Boundary-based metrics are strongly coupled to boundary density: threshold sweeps produce larger W-F1 changes than switching between methods. These findings support viewing topic segmentation as a granularity selection problem rather than prediction of a single correct boundary set. This motivates separating boundary scoring from boundary selection for analyzing and tuning segmentation under varying annotation granularities.