What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Sep 16, 2025
Abstract:Large Language Models (LLMs) are capable of solving complex math problems or answer difficult questions on almost any topic, but can they generate random street addresses for European cities?
Via

Sep 16, 2025
Abstract:As large language models (LLMs) become increasingly embedded in products used by millions, their outputs may influence individual beliefs and, cumulatively, shape public opinion. If the behavior of LLMs can be intentionally steered toward specific ideological positions, such as political or religious views, then those who control these systems could gain disproportionate influence over public discourse. Although it remains an open question whether LLMs can reliably be guided toward coherent ideological stances and whether such steering can be effectively prevented, a crucial first step is to develop methods for detecting when such steering attempts occur. In this work, we adapt a previously proposed statistical method to the new context of ideological bias auditing. Our approach carries over the model-agnostic design of the original framework, which does not require access to the internals of the language model. Instead, it identifies potential ideological steering by analyzing distributional shifts in model outputs across prompts that are thematically related to a chosen topic. This design makes the method particularly suitable for auditing proprietary black-box systems. We validate our approach through a series of experiments, demonstrating its practical applicability and its potential to support independent post hoc audits of LLM behavior.
Via

Sep 16, 2025
Abstract:While activation steering in large language models (LLMs) is a growing area of research, methods can often incur broader effects than desired. This motivates isolation of purer concept vectors to enable targeted interventions and understand LLM behavior at a more granular level. We present RepIt, a simple and data-efficient framework for isolating concept-specific representations. Across five frontier LLMs, RepIt enables precise interventions: it selectively suppresses refusal on targeted concepts while preserving refusal elsewhere, producing models that answer WMD-related questions while still scoring as safe on standard benchmarks. We further show that the corrective signal localizes to just 100-200 neurons and that robust target representations can be extracted from as few as a dozen examples on a single A6000. This efficiency raises a dual concern: manipulations can be performed with modest compute and data to extend to underrepresented data-scarce topics while evading existing benchmarks. By disentangling refusal vectors with RepIt, this work demonstrates that targeted interventions can counteract overgeneralization, laying the foundation for more granular control of model behavior.
Via

Sep 15, 2025
Abstract:The effectiveness of in-context learning relies heavily on selecting demonstrations that provide all the necessary information for a given test input. To achieve this, it is crucial to identify and cover fine-grained knowledge requirements. However, prior methods often retrieve demonstrations based solely on embedding similarity or generation probability, resulting in irrelevant or redundant examples. In this paper, we propose TopicK, a topic coverage-based retrieval framework that selects demonstrations to comprehensively cover topic-level knowledge relevant to both the test input and the model. Specifically, TopicK estimates the topics required by the input and assesses the model's knowledge on those topics. TopicK then iteratively selects demonstrations that introduce previously uncovered required topics, in which the model exhibits low topical knowledge. We validate the effectiveness of TopicK through extensive experiments across various datasets and both open- and closed-source LLMs. Our source code is available at https://github.com/WonbinKweon/TopicK_EMNLP2025.
* EMNLP 2025 Main
Via

Sep 11, 2025
Abstract:Machine learning models in dynamic environments often suffer from concept drift, where changes in the data distribution degrade performance. While detecting this drift is a well-studied topic, explaining how and why the model's decision-making logic changes still remains a significant challenge. In this paper, we introduce a novel methodology to explain concept drift by analyzing the temporal evolution of group-based counterfactual explanations (GCEs). Our approach tracks shifts in the GCEs' cluster centroids and their associated counterfactual action vectors before and after a drift. These evolving GCEs act as an interpretable proxy, revealing structural changes in the model's decision boundary and its underlying rationale. We operationalize this analysis within a three-layer framework that synergistically combines insights from the data layer (distributional shifts), the model layer (prediction disagreement), and our proposed explanation layer. We show that such holistic view allows for a more comprehensive diagnosis of drift, making it possible to distinguish between different root causes, such as a spatial data shift versus a re-labeling of concepts.
* TempXAI Workshop @ ECML PKDD 2025
Via

Sep 11, 2025
Abstract:Creating models from past observations and ensuring their effectiveness on new data is the essence of machine learning. However, selecting models that generalize well remains a challenging task. Related to this topic, the Rashomon Effect refers to cases where multiple models perform similarly well for a given learning problem. This often occurs in real-world scenarios, like the manufacturing process or medical diagnosis, where diverse patterns in data lead to multiple high-performing solutions. We propose the Rashomon Ensemble, a method that strategically selects models from these diverse high-performing solutions to improve generalization. By grouping models based on both their performance and explanations, we construct ensembles that maximize diversity while maintaining predictive accuracy. This selection ensures that each model covers a distinct region of the solution space, making the ensemble more robust to distribution shifts and variations in unseen data. We validate our approach on both open and proprietary collaborative real-world datasets, demonstrating up to 0.20+ AUROC improvements in scenarios where the Rashomon ratio is large. Additionally, we demonstrate tangible benefits for businesses in various real-world applications, highlighting the robustness, practicality, and effectiveness of our approach.
* Paper accepted to the ACM Transactions on Knowledge Discovery from
Data (TKDD) for publication (preprint version)
Via

Sep 08, 2025
Abstract:This study presents a framework for automated evaluation of dynamically evolving topic models using Large Language Models (LLMs). Topic modeling is essential for organizing and retrieving scholarly content in digital library systems, helping users navigate complex and evolving knowledge domains. However, widely used automated metrics, such as coherence and diversity, often capture only narrow statistical patterns and fail to explain semantic failures in practice. We introduce a purpose-oriented evaluation framework that employs nine LLM-based metrics spanning four key dimensions of topic quality: lexical validity, intra-topic semantic soundness, inter-topic structural soundness, and document-topic alignment soundness. The framework is validated through adversarial and sampling-based protocols, and is applied across datasets spanning news articles, scholarly publications, and social media posts, as well as multiple topic modeling methods and open-source LLMs. Our analysis shows that LLM-based metrics provide interpretable, robust, and task-relevant assessments, uncovering critical weaknesses in topic models such as redundancy and semantic drift, which are often missed by traditional metrics. These results support the development of scalable, fine-grained evaluation tools for maintaining topic relevance in dynamic datasets. All code and data supporting this work are accessible at https://github.com/zhiyintan/topic-model-LLMjudgment.
* Accepted for publication in International Journal on Digital
Libraries (IJDL)
Via

Sep 10, 2025
Abstract:Optimization has been an important factor and topic of interest in training deep learning models, yet less attention has been given to how we select the optimizers we use to train these models. Hence, there is a need to dive deeper into how we select the optimizers we use for training and the metrics that determine this selection. In this work, we compare the performance of 10 different optimizers in training a simple Multi-layer Perceptron model using a heart disease dataset from Kaggle. We set up a consistent training paradigm and evaluate the optimizers based on metrics such as convergence speed and stability. We also include some other Machine Learning Evaluation metrics such as AUC, Precision, and Recall, which are central metrics to classification problems. Our results show that there are trade-offs between convergence speed and stability, as optimizers like Adagrad and Adadelta, which are more stable, took longer time to converge. Across all our metrics, we chose RMSProp to be the most effective optimizer for this heart disease prediction task because it offered a balanced performance across key metrics. It achieved a precision of 0.765, a recall of 0.827, and an AUC of 0.841, along with faster training time. However, it was not the most stable. We recommend that, in less compute-constrained environments, this method of choosing optimizers through a thorough evaluation should be adopted to increase the scientific nature and performance in training deep learning models.
* 11 pages, 4 figures
Via

Sep 11, 2025
Abstract:Modern smartphones are equipped with Lidar sensors providing depth-sensing capabilities. Recent works have shown that this complementary sensor allows to improve various tasks in image processing, including deblurring. However, there is a current lack of datasets with realistic blurred images and paired mobile Lidar depth maps to further study the topic. At the same time, there is also a lack of blind zero-shot methods that can deblur a real image using the depth guidance without requiring extensive training sets of paired data. In this paper, we propose an image deblurring method based on denoising diffusion models that can leverage the Lidar depth guidance and does not require training data with paired Lidar depth maps. We also present the first dataset with real blurred images with corresponding Lidar depth maps and sharp ground truth images, acquired with an Apple iPhone 15 Pro, for the purpose of studying Lidar-guided deblurring. Experimental results on this novel dataset show that Lidar guidance is effective and the proposed method outperforms state-of-the-art deblurring methods in terms of perceptual quality.
Via

Sep 09, 2025
Abstract:Visual reasoning over structured data such as tables is a critical capability for modern vision-language models (VLMs), yet current benchmarks remain limited in scale, diversity, or reasoning depth, especially when it comes to rendered table images. Addressing this gap, we introduce Visual-TableQA, a large-scale, open-domain multimodal dataset specifically designed to evaluate and enhance visual reasoning over complex tabular data. Our generation pipeline is modular, scalable, and fully autonomous, involving multiple reasoning LLMs collaborating across distinct roles: generation, validation, and inspiration. Visual-TableQA comprises 2.5k richly structured LaTeX-rendered tables and 6k reasoning-intensive QA pairs, all produced at a cost of under USD 100. To promote diversity and creativity, our pipeline performs multi-model collaborative data generation via cross-model prompting ('inspiration') and LLM-jury filtering. Stronger models seed layouts and topics that weaker models elaborate, collectively distilling diverse reasoning patterns and visual structures into the dataset. Empirical results show that models fine-tuned on Visual-TableQA generalize robustly to external benchmarks, outperforming several proprietary models despite the dataset's synthetic nature. The full pipeline and resources are publicly available at https://github.com/AI-4-Everyone/Visual-TableQA.
* Work in Progress
Via
