What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
May 08, 2025
Abstract:The advent of the COVID-19 pandemic has undoubtedly affected the political scene worldwide and the introduction of new terminology and public opinions regarding the virus has further polarized partisan stances. Using a collection of tweets gathered from leading American political figures online (Republican and Democratic), we explored the partisan differences in approach, response, and attitude towards handling the international crisis. Implementation of the bag-of-words, bigram, and TF-IDF models was used to identify and analyze keywords, topics, and overall sentiments from each party. Results suggest that Democrats are more concerned with the casualties of the pandemic, and give more medical precautions and recommendations to the public whereas Republicans are more invested in political responsibilities such as keeping the public updated through media and carefully watching the progress of the virus. We propose a systematic approach to predict and distinguish a tweet's political stance (left or right leaning) based on its COVID-19 related terms using different classification algorithms on different language models.
Via

May 17, 2025
Abstract:Socioeconomic status (SES) fundamentally influences how people interact with each other and more recently, with digital technologies like Large Language Models (LLMs). While previous research has highlighted the interaction between SES and language technology, it was limited by reliance on proxy metrics and synthetic data. We survey 1,000 individuals from diverse socioeconomic backgrounds about their use of language technologies and generative AI, and collect 6,482 prompts from their previous interactions with LLMs. We find systematic differences across SES groups in language technology usage (i.e., frequency, performed tasks), interaction styles, and topics. Higher SES entails a higher level of abstraction, convey requests more concisely, and topics like 'inclusivity' and 'travel'. Lower SES correlates with higher anthropomorphization of LLMs (using ''hello'' and ''thank you'') and more concrete language. Our findings suggest that while generative language technologies are becoming more accessible to everyone, socioeconomic linguistic differences still stratify their use to exacerbate the digital divide. These differences underscore the importance of considering SES in developing language technologies to accommodate varying linguistic needs rooted in socioeconomic factors and limit the AI Gap across SES groups.
* Accepted at ACL Main 2025
Via

May 09, 2025
Abstract:Recent advancements in foundation models, such as the Segment Anything Model (SAM), have shown strong performance in various vision tasks, particularly image segmentation, due to their impressive zero-shot segmentation capabilities. However, effectively adapting such models for medical image classification is still a less explored topic. In this paper, we introduce a new framework to adapt SAM for medical image classification. First, we utilize the SAM image encoder as a feature extractor to capture segmentation-based features that convey important spatial and contextual details of the image, while freezing its weights to avoid unnecessary overhead during training. Next, we propose a novel Spatially Localized Channel Attention (SLCA) mechanism to compute spatially localized attention weights for the feature maps. The features extracted from SAM's image encoder are processed through SLCA to compute attention weights, which are then integrated into deep learning classification models to enhance their focus on spatially relevant or meaningful regions of the image, thus improving classification performance. Experimental results on three public medical image classification datasets demonstrate the effectiveness and data-efficiency of our approach.
Via

May 12, 2025
Abstract:Obtaining real-world network datasets is often challenging because of privacy, security, and computational constraints. In the absence of such datasets, graph generative models become essential tools for creating synthetic datasets. In this paper, we introduce a novel machine learning model for generating high-fidelity synthetic network flow datasets that are representative of real-world networks. Our approach involves the generation of dynamic multigraphs using a stochastic Kronecker graph generator for structure generation and a tabular generative adversarial network for feature generation. We further employ an XGBoost (eXtreme Gradient Boosting) model for graph alignment, ensuring accurate overlay of features onto the generated graph structure. We evaluate our model using new metrics that assess both the accuracy and diversity of the synthetic graphs. Our results demonstrate improvements in accuracy over previous large-scale graph generation methods while maintaining similar efficiency. We also explore the trade-off between accuracy and diversity in synthetic graph dataset creation, a topic not extensively covered in related works. Our contributions include the synthesis and evaluation of large real-world netflow datasets and the definition of new metrics for evaluating synthetic graph generative models.
Via

May 08, 2025
Abstract:The paper considers the use of GPT models with retrieval-augmented generation (RAG) for qualitative and quantitative analytics on NATO sentiments, NATO unity and NATO Article 5 trust opinion scores in different web sources: news sites found via Google Search API, Youtube videos with comments, and Reddit discussions. A RAG approach using GPT-4.1 model was applied to analyse news where NATO related topics were discussed. Two levels of RAG analytics were used: on the first level, the GPT model generates qualitative news summaries and quantitative opinion scores using zero-shot prompts; on the second level, the GPT model generates the summary of news summaries. Quantitative news opinion scores generated by the GPT model were analysed using Bayesian regression to get trend lines. The distributions found for the regression parameters make it possible to analyse an uncertainty in specified news opinion score trends. Obtained results show a downward trend for analysed scores of opinion related to NATO unity. This approach does not aim to conduct real political analysis; rather, it consider AI based approaches which can be used for further analytics as a part of a complex analytical approach. The obtained results demonstrate that the use of GPT models for news analysis can give informative qualitative and quantitative analytics, providing important insights. The dynamic model based on neural ordinary differential equations was considered for modelling public opinions. This approach makes it possible to analyse different scenarios for evolving public opinions.
Via

May 12, 2025
Abstract:Bayesian inference has many advantages in decision making of agents (e.g. robotics/simulative agent) over a regular data-driven black-box neural network: Data-efficiency, generalization, interpretability, and safety where these advantages benefit directly/indirectly from the uncertainty quantification of Bayesian inference. However, there are few comprehensive reviews to summarize the progress of Bayesian inference on reinforcement learning (RL) for decision making to give researchers a systematic understanding. This paper focuses on combining Bayesian inference with RL that nowadays is an important approach in agent decision making. To be exact, this paper discusses the following five topics: 1) Bayesian methods that have potential for agent decision making. First basic Bayesian methods and models (Bayesian rule, Bayesian learning, and Bayesian conjugate models) are discussed followed by variational inference, Bayesian optimization, Bayesian deep learning, Bayesian active learning, Bayesian generative models, Bayesian meta-learning, and lifelong Bayesian learning. 2) Classical combinations of Bayesian methods with model-based RL (with approximation methods), model-free RL, and inverse RL. 3) Latest combinations of potential Bayesian methods with RL. 4) Analytical comparisons of methods that combine Bayesian methods with RL with respect to data-efficiency, generalization, interpretability, and safety. 5) In-depth discussions in six complex problem variants of RL, including unknown reward, partial-observability, multi-agent, multi-task, non-linear non-Gaussian, and hierarchical RL problems and the summary of how Bayesian methods work in the data collection, data processing and policy learning stages of RL to pave the way for better agent decision-making strategies.
Via

May 17, 2025
Abstract:Content moderation research has recently made significant advances, but still fails to serve the majority of the world's languages due to the lack of resources, leaving millions of vulnerable users to online hostility. This work presents a large-scale human-annotated multi-task benchmark dataset for abusive language detection in Tigrinya social media with joint annotations for three tasks: abusiveness, sentiment, and topic classification. The dataset comprises 13,717 YouTube comments annotated by nine native speakers, collected from 7,373 videos with a total of over 1.2 billion views across 51 channels. We developed an iterative term clustering approach for effective data selection. Recognizing that around 64% of Tigrinya social media content uses Romanized transliterations rather than native Ge'ez script, our dataset accommodates both writing systems to reflect actual language use. We establish strong baselines across the tasks in the benchmark, while leaving significant challenges for future contributions. Our experiments reveal that small, specialized multi-task models outperform the current frontier models in the low-resource setting, achieving up to 86% accuracy (+7 points) in abusiveness detection. We make the resources publicly available to promote research on online safety.
Via

May 09, 2025
Abstract:In the last few decades, Machine Learning (ML) has achieved significant success across domains ranging from healthcare, sustainability, and the social sciences, to criminal justice and finance. But its deployment in increasingly sophisticated, critical, and sensitive areas affecting individuals, the groups they belong to, and society as a whole raises critical concerns around fairness, transparency, robustness, and privacy, among others. As the complexity and scale of ML systems and of the settings in which they are deployed grow, so does the need for responsible ML methods that address these challenges while providing guaranteed performance in deployment. Mixed-integer optimization (MIO) offers a powerful framework for embedding responsible ML considerations directly into the learning process while maintaining performance. For example, it enables learning of inherently transparent models that can conveniently incorporate fairness or other domain specific constraints. This tutorial paper provides an accessible and comprehensive introduction to this topic discussing both theoretical and practical aspects. It outlines some of the core principles of responsible ML, their importance in applications, and the practical utility of MIO for building ML models that align with these principles. Through examples and mathematical formulations, it illustrates practical strategies and available tools for efficiently solving MIO problems for responsible ML. It concludes with a discussion on current limitations and open research questions, providing suggestions for future work.
* 56 pages, 10 figures
Via

May 16, 2025
Abstract:Probabilistic next-token prediction trained using cross-entropy loss is the basis of most large language models. Given a sequence of previous values, next-token prediction assigns a probability to each possible next value in the vocabulary. There are many ways to use next-token prediction to output token sequences. This paper examines a few of these algorithms (greedy, lookahead, random sampling, and temperature-scaled random sampling) and studies their consistency with respect to various goals encoded as loss functions. Although consistency of surrogate losses with respect to a target loss function is a well researched topic, we are the first to study it in the context of LLMs (to the best of our knowledge). We find that, so long as next-token prediction converges to its true probability distribution, random sampling is consistent with outputting sequences that mimic sampling from the true probability distribution. For the other goals, such as minimizing the 0-1 loss on the entire sequence, we show no polynomial-time algorithm is optimal for all probability distributions and all decoding algorithms studied are only optimal for a subset of probability distributions. When analyzing these results, we see that there is a dichotomy created between the goals of information retrieval and creative generation for the decoding algorithms. This shows that choosing the correct decoding algorithm based on the desired goal is extremely important and many of the ones used are lacking theoretical grounding in numerous scenarios.
* 23 pages
Via

May 06, 2025
Abstract:Dual-system VLA (Vision-Language-Action) architectures have become a hot topic in embodied intelligence research, but there is a lack of sufficient open-source work for further performance analysis and optimization. To address this problem, this paper will summarize and compare the structural designs of existing dual-system architectures, and conduct systematic empirical evaluations on the core design elements of existing dual-system architectures. Ultimately, it will provide a low-cost open-source model for further exploration. Of course, this project will continue to update with more experimental conclusions and open-source models with improved performance for everyone to choose from. Project page: https://openhelix-robot.github.io/.
Via
