Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Topic Modeling": models, code, and papers

Improved Topic modeling in Twitter through Community Pooling

Dec 20, 2021
Federico Albanese, Esteban Feuerstein

Social networks play a fundamental role in propagation of information and news. Characterizing the content of the messages becomes vital for different tasks, like breaking news detection, personalized message recommendation, fake users detection, information flow characterization and others. However, Twitter posts are short and often less coherent than other text documents, which makes it challenging to apply text mining algorithms to these datasets efficiently. Tweet-pooling (aggregating tweets into longer documents) has been shown to improve automatic topic decomposition, but the performance achieved in this task varies depending on the pooling method. In this paper, we propose a new pooling scheme for topic modeling in Twitter, which groups tweets whose authors belong to the same community (group of users who mainly interact with each other but not with other groups) on a user interaction graph. We present a complete evaluation of this methodology, state of the art schemes and previous pooling models in terms of the cluster quality, document retrieval tasks performance and supervised machine learning classification score. Results show that our Community polling method outperformed other methods on the majority of metrics in two heterogeneous datasets, while also reducing the running time. This is useful when dealing with big amounts of noisy and short user-generated social media texts. Overall, our findings contribute to an improved methodology for identifying the latent topics in a Twitter dataset, without the need of modifying the basic machinery of a topic decomposition model.

  

Low-Resource Contextual Topic Identification on Speech

Sep 28, 2018
Chunxi Liu, Matthew Wiesner, Shinji Watanabe, Craig Harman, Jan Trmal, Najim Dehak, Sanjeev Khudanpur

In topic identification (topic ID) on real-world unstructured audio, an audio instance of variable topic shifts is first broken into sequential segments, and each segment is independently classified. We first present a general purpose method for topic ID on spoken segments in low-resource languages, using a cascade of universal acoustic modeling, translation lexicons to English, and English-language topic classification. Next, instead of classifying each segment independently, we demonstrate that exploring the contextual dependencies across sequential segments can provide large improvements. In particular, we propose an attention-based contextual model which is able to leverage the contexts in a selective manner. We test both our contextual and non-contextual models on four LORELEI languages, and on all but one our attention-based contextual model significantly outperforms the context-independent models.

* Accepted for publication at 2018 IEEE Workshop on Spoken Language Technology (SLT) 
  

Representing Mixtures of Word Embeddings with Mixtures of Topic Embeddings

Mar 15, 2022
Dongsheng Wang, Dandan Guo, He Zhao, Huangjie Zheng, Korawat Tanwisuth, Bo Chen, Mingyuan Zhou

A topic model is often formulated as a generative model that explains how each word of a document is generated given a set of topics and document-specific topic proportions. It is focused on capturing the word co-occurrences in a document and hence often suffers from poor performance in analyzing short documents. In addition, its parameter estimation often relies on approximate posterior inference that is either not scalable or suffers from large approximation error. This paper introduces a new topic-modeling framework where each document is viewed as a set of word embedding vectors and each topic is modeled as an embedding vector in the same embedding space. Embedding the words and topics in the same vector space, we define a method to measure the semantic difference between the embedding vectors of the words of a document and these of the topics, and optimize the topic embeddings to minimize the expected difference over all documents. Experiments on text analysis demonstrate that the proposed method, which is amenable to mini-batch stochastic gradient descent based optimization and hence scalable to big corpora, provides competitive performance in discovering more coherent and diverse topics and extracting better document representations.

* Proceedings of ICLR, 2022 
  

On Large-Scale Dynamic Topic Modeling with Nonnegative CP Tensor Decomposition

Jan 02, 2020
Miju Ahn, Nicole Eikmeier, Jamie Haddock, Lara Kassab, Alona Kryshchenko, Kathryn Leonard, Deanna Needell, R. W. M. A. Madushani, Elena Sizikova, Chuntian Wang

There is currently an unprecedented demand for large-scale temporal data analysis due to the explosive growth of data. Dynamic topic modeling has been widely used in social and data sciences with the goal of learning latent topics that emerge, evolve, and fade over time. Previous work on dynamic topic modeling primarily employ the method of nonnegative matrix factorization (NMF), where slices of the data tensor are each factorized into the product of lower-dimensional nonnegative matrices. With this approach, however, information contained in the temporal dimension of the data is often neglected or underutilized. To overcome this issue, we propose instead adopting the method of nonnegative CANDECOMP/PARAPAC (CP) tensor decomposition (NNCPD), where the data tensor is directly decomposed into a minimal sum of outer products of nonnegative vectors, thereby preserving the temporal information. The viability of NNCPD is demonstrated through application to both synthetic and real data, where significantly improved results are obtained compared to those of typical NMF-based methods. The advantages of NNCPD over such approaches are studied and discussed. To the best of our knowledge, this is the first time that NNCPD has been utilized for the purpose of dynamic topic modeling, and our findings will be transformative for both applications and further developments.

* 23 pages, 29 figures, submitted to Women in Data Science and Mathematics (WiSDM) Workshop Proceedings, "Advances in Data Science", AWM-Springer series 
  

CTM -- A Model for Large-Scale Multi-View Tweet Topic Classification

May 03, 2022
Vivek Kulkarni, Kenny Leung, Aria Haghighi

Automatically associating social media posts with topics is an important prerequisite for effective search and recommendation on many social media platforms. However, topic classification of such posts is quite challenging because of (a) a large topic space (b) short text with weak topical cues, and (c) multiple topic associations per post. In contrast to most prior work which only focuses on post classification into a small number of topics ($10$-$20$), we consider the task of large-scale topic classification in the context of Twitter where the topic space is $10$ times larger with potentially multiple topic associations per Tweet. We address the challenges above by proposing a novel neural model, CTM that (a) supports a large topic space of $300$ topics and (b) takes a holistic approach to tweet content modeling -- leveraging multi-modal content, author context, and deeper semantic cues in the Tweet. Our method offers an effective way to classify Tweets into topics at scale by yielding superior performance to other approaches (a relative lift of $\mathbf{20}\%$ in median average precision score) and has been successfully deployed in production at Twitter.

* 12 pages. 1 figure. NAACL Industry Track 
  

Topic Modeling Using Distributed Word Embeddings

Mar 15, 2016
Ramandeep S Randhawa, Parag Jain, Gagan Madan

We propose a new algorithm for topic modeling, Vec2Topic, that identifies the main topics in a corpus using semantic information captured via high-dimensional distributed word embeddings. Our technique is unsupervised and generates a list of topics ranked with respect to importance. We find that it works better than existing topic modeling techniques such as Latent Dirichlet Allocation for identifying key topics in user-generated content, such as emails, chats, etc., where topics are diffused across the corpus. We also find that Vec2Topic works equally well for non-user generated content, such as papers, reports, etc., and for small corpora such as a single-document.

  

Generating Diversified Comments via Reader-Aware Topic Modeling and Saliency Detection

Feb 13, 2021
Wei Wang, Piji Li, Hai-Tao Zheng

Automatic comment generation is a special and challenging task to verify the model ability on news content comprehension and language generation. Comments not only convey salient and interesting information in news articles, but also imply various and different reader characteristics which we treat as the essential clues for diversity. However, most of the comment generation approaches only focus on saliency information extraction, while the reader-aware factors implied by comments are neglected. To address this issue, we propose a unified reader-aware topic modeling and saliency information detection framework to enhance the quality of generated comments. For reader-aware topic modeling, we design a variational generative clustering algorithm for latent semantic learning and topic mining from reader comments. For saliency information detection, we introduce Bernoulli distribution estimating on news content to select saliency information. The obtained topic representations as well as the selected saliency information are incorporated into the decoder to generate diversified and informative comments. Experimental results on three datasets show that our framework outperforms existing baseline methods in terms of both automatic metrics and human evaluation. The potential ethical issues are also discussed in detail.

* AAAI 2021. The potential ethical issues are also discussed in detail 
  

Effective user intent mining with unsupervised word representation models and topic modelling

Sep 04, 2021
Bencheng Wei

Understanding the intent behind chat between customers and customer service agents has become a crucial problem nowadays due to an exponential increase in the use of the Internet by people from different cultures and educational backgrounds. More importantly, the explosion of e-commerce has led to a significant increase in text conversation between customers and agents. In this paper, we propose an approach to data mining the conversation intents behind the textual data. Using the customer service data set, we train unsupervised text representation models, and then develop an intent mapping model which would rank the predefined intents base on cosine similarity between sentences and intents. Topic-modeling techniques are used to define intents and domain experts are also involved to interpret topic modelling results. With this approach, we can get a good understanding of the user intentions behind the unlabelled customer service textual data.

  

Modeling Social Annotation: a Bayesian Approach

May 26, 2010
Anon Plangprasopchok, Kristina Lerman

Collaborative tagging systems, such as Delicious, CiteULike, and others, allow users to annotate resources, e.g., Web pages or scientific papers, with descriptive labels called tags. The social annotations contributed by thousands of users, can potentially be used to infer categorical knowledge, classify documents or recommend new relevant information. Traditional text inference methods do not make best use of social annotation, since they do not take into account variations in individual users' perspectives and vocabulary. In a previous work, we introduced a simple probabilistic model that takes interests of individual annotators into account in order to find hidden topics of annotated resources. Unfortunately, that approach had one major shortcoming: the number of topics and interests must be specified a priori. To address this drawback, we extend the model to a fully Bayesian framework, which offers a way to automatically estimate these numbers. In particular, the model allows the number of interests and topics to change as suggested by the structure of the data. We evaluate the proposed model in detail on the synthetic and real-world data by comparing its performance to Latent Dirichlet Allocation on the topic extraction task. For the latter evaluation, we apply the model to infer topics of Web resources from social annotations obtained from Delicious in order to discover new resources similar to a specified one. Our empirical results demonstrate that the proposed model is a promising method for exploiting social knowledge contained in user-generated annotations.

* 29 Pages, Accepted for publication at ACM Transactions on Knowledge Discovery from Data(TKDD) on March 2, 2010 
  
<<
12
13
14
15
16
17
18
19
20
21
22
23
24
>>