Pluralism, the capacity to engage with diverse perspectives without collapsing them into a single viewpoint, is critical for developing large language models that faithfully reflect human heterogeneity. Yet this characteristic has not been carefully examined in the LLM research community and remains absent from most alignment studies. Debate-oriented sources provide a natural entry point for pluralism research. Previous work builds on online debate sources but remains constrained by costly human validation. Other debate-rich platforms such as Reddit and Kialo also offer promising material: Reddit provides linguistic diversity and scale but lacks clear argumentative structure, while Kialo supplies explicit pro/con graphs but remains overly concise and detached from natural discourse. We introduce PERSPECTRA, a pluralist benchmark that integrates the structural clarity of Kialo debate graphs with the linguistic diversity of real Reddit discussions. Using a controlled retrieval-and-expansion pipeline, we construct 3,810 enriched arguments spanning 762 pro/con stances on 100 controversial topics. Each opinion is expanded to multiple naturalistic variants, enabling robust evaluation of pluralism. We initialise three tasks with PERSPECTRA: opinion counting (identifying distinct viewpoints), opinion matching (aligning supporting stances and discourse to source opinions), and polarity check (inferring aggregate stance in mixed discourse). Experiments with state-of-the-art open-source and proprietary LLMs, highlight systematic failures, such as overestimating the number of viewpoints and misclassifying concessive structures, underscoring the difficulty of pluralism-aware understanding and reasoning. By combining diversity with structure, PERSPECTRA establishes the first scalable, configurable benchmark for evaluating how well models represent, distinguish, and reason over multiple perspectives.
High-quality relevance judgements over large query sets are essential for evaluating Information Retrieval (IR) systems, yet manual annotation remains costly and time-consuming. Large Language Models (LLMs) have recently shown promise as automatic relevance assessors, but their reliability is still limited. Most existing approaches rely on zero-shot prompting or In-Context Learning (ICL) with a small number of labeled examples. However, standard ICL treats examples as independent instances and fails to explicitly capture the underlying relevance criteria of a topic, restricting its ability to generalize to unseen query-document pairs. To address this limitation, we introduce Relevance Context Learning (RCL), a novel framework that leverages human relevance judgements to explicitly model topic-specific relevance criteria. Rather than directly using labeled examples for in-context prediction, RCL first prompts an LLM (Instructor LLM) to analyze sets of judged query-document pairs and generate explicit narratives that describe what constitutes relevance for a given topic. These relevance narratives are then used as structured prompts to guide a second LLM (Assessor LLM) in producing relevance judgements. To evaluate RCL in a realistic data collection setting, we propose a hybrid pooling strategy in which a shallow depth-\textit{k} pool from participating systems is judged by human assessors, while the remaining documents are labeled by LLMs. Experimental results demonstrate that RCL substantially outperforms zero-shot prompting and consistently improves over standard ICL. Overall, our findings indicate that transforming relevance examples into explicit, context-aware relevance narratives is a more effective way of exploiting human judgements for LLM-based IR dataset construction.
Open-ended dialogue agents aim to deliver engaging, personalized interactions by adapting to users' traits, but existing methods face critical limitations: over-reliance on pre-collected user data, and short-horizon biases in reinforcement learning (RL) that neglect long-term dialogue value. To address these, we propose a novel long-horizon RL framework integrating online personalization with Adaptive Tree-based Group Relative Policy Optimization (AT-GRPO). Adopting a two-agent game paradigm, a user agent constructs dynamic environments via style mimicry (learning user-specific conversational traits) and active termination (predicting turn-level termination probabilities as immediate rewards), forming an iterative cycle that drives the dialogue agent to deepen interest exploration. AT-GRPO reinterprets dialogue trajectories as trees and introduces adaptive observation ranges. Unlike full tree expansion that incurs exponential overhead, it limits each node to aggregate rewards from a stage-aware range: larger ranges support early-stage topic exploration, while smaller ranges facilitate late-stage dialogue maintenance. This design reduces rollout budgets from exponential to polynomial in the dialogue length, while preserving long-term reward capture. Extensive experiments show our framework's superior performance, sample efficiency, and robustness.
Generating step-by-step "how-to" procedures is a key LLM capability: how-to advice is commonly requested in chatbots, and step-by-step planning is critical for reasoning over complex tasks. Yet, measuring and improving procedural validity at scale on real-world tasks remains challenging and understudied. To address this, we introduce How2Everything, a scalable framework to evaluate and improve goal-conditioned procedure generation. Our framework includes How2Mine, which mines 351K procedures from 980K web pages across 14 topics and readily scales to larger corpora. From this pool we build How2Bench, a 7K-example evaluation set balanced across topics. To reliably score model outputs, we develop How2Score, an evaluation protocol that uses an LLM judge to detect whether a generation contains any critical failure that would prevent achieving the goal. For low-cost, reproducible evaluation, we distill a frontier model into an open 8B model, achieving 80.5% agreement with human annotators. How2Bench reveals clear scaling trends across model sizes and training stages, providing signal early in pretraining. Finally, RL using How2Score as a reward improves performance on How2Bench by >10 points across three models without systematic regressions on standard benchmarks, with gains robust to superficial source-document memorization or format compliance. Taken together, How2Everything shows how pretraining web data can support a closed loop of capability evaluation and improvement at scale.
Spreading dynamics is a central topic in the physics of complex systems and network science, providing a unified framework for understanding how information, behaviors, and diseases propagate through interactions among system units. In many propagation contexts, spreading processes are influenced by multiple interacting factors, such as information expression patterns, cultural contexts, living environments, cognitive preferences, and public policies, which are difficult to incorporate directly into classical modeling frameworks. Recently, large language models (LLMs) have exhibited strong capabilities in natural language understanding, reasoning, and generation, enabling explicit perception of semantic content and contextual cues in spreading processes, thereby supporting the analysis of the different influencing factors. Beyond serving as external analytical tools, LLMs can also act as interactive agents embedded in propagation systems, potentially influencing spreading pathways and feedback structures. Consequently, the roles and impacts of LLMs on spreading dynamics have become an active and rapidly growing research area across multiple research disciplines. This review provides a comprehensive overview of recent advances in applying LLMs to the study of spreading dynamics across two representative domains: digital epidemics, such as misinformation and rumors, and biological epidemics, including infectious disease outbreaks. We first examine the foundations of epidemic modeling from a complex-systems perspective and discuss how LLM-based approaches relate to traditional frameworks. We then systematically review recent studies from three key perspectives, which are epidemic modeling, epidemic detection and surveillance, and epidemic prediction and management, to clarify how LLMs enhance these areas. Finally, open challenges and potential research directions are discussed.
Embedding geometry plays a fundamental role in retrieval quality, yet dense retrievers for retrieval-augmented generation (RAG) remain largely confined to Euclidean space. However, natural language exhibits hierarchical structure from broad topics to specific entities that Euclidean embeddings fail to preserve, causing semantically distant documents to appear spuriously similar and increasing hallucination risk. To address these limitations, we introduce hyperbolic dense retrieval, developing two model variants in the Lorentz model of hyperbolic space: HyTE-FH, a fully hyperbolic transformer, and HyTE-H, a hybrid architecture projecting pre-trained Euclidean embeddings into hyperbolic space. To prevent representational collapse during sequence aggregation, we introduce the Outward Einstein Midpoint, a geometry-aware pooling operator that provably preserves hierarchical structure. On MTEB, HyTE-FH outperforms equivalent Euclidean baselines, while on RAGBench, HyTE-H achieves up to 29% gains over Euclidean baselines in context relevance and answer relevance using substantially smaller models than current state-of-the-art retrievers. Our analysis also reveals that hyperbolic representations encode document specificity through norm-based separation, with over 20% radial increase from general to specific concepts, a property absent in Euclidean embeddings, underscoring the critical role of geometric inductive bias in faithful RAG systems.
Open research information (ORI) play a central role in shaping how scientific knowledge is produced, disseminated, validated, and reused across the research lifecycle. While the visibility of such ORI infrastructures is often assessed through citation-based metrics, in this study, we present a full-text, natural language processing (NLP) driven scientometric framework to systematically quantify the impact of ORI infrastructures beyond citation counts, using the LXCat platform for low temperature plasma (LTP) research as a representative case study. The modeling of LTPs and interpretation of LTP experiments rely heavily on accurate data, much of which is hosted on LXCat, a community-driven, open-access platform central to the LTP research ecosystem. To investigate the scholarly impact of the LXCat platform over the past decade, we analyzed a curated corpus of full-text research articles citing three foundational LXCat publications. We present a comprehensive pipeline that integrates chemical entity recognition, dataset and solver mention extraction, affiliation based geographic mapping and topic modeling to extract fine-grained patterns of data usage that reflect implicit research priorities, data practices, differential reliance on specific databases, evolving modes of data reuse and coupling within scientific workflows, and thematic evolution. Importantly, our proposed methodology is domain-agnostic and transferable to other ORI contexts, and highlights the utility of NLP in quantifying the role of scientific data infrastructures and offers a data-driven reflection on how open-access platforms like LXCat contribute to shaping research directions. This work presents a scalable scientometric framework that has the potential to support evidence based evaluation of ORI platforms and to inform infrastructure design, governance, sustainability, and policy for future development.
With increasing deployment of Large Language Models (LLMs) in the finance domain, LLMs are increasingly expected to parse complex regulatory disclosures. However, existing benchmarks often focus on isolated details, failing to reflect the complexity of professional analysis that requires synthesizing information across multiple documents, reporting periods, and corporate entities. They do not distinguish whether errors stem from retrieval failures, generation flaws, finance-specific reasoning mistakes, or misunderstanding of the query or context. This makes it difficult to pinpoint performance bottlenecks. To bridge these gaps, we introduce Fin-RATE, a benchmark built on U.S. Securities and Exchange Commission (SEC) filings and mirror financial analyst workflows through three pathways: detail-oriented reasoning within individual disclosures, cross-entity comparison under shared topics, and longitudinal tracking of the same firm across reporting periods. We benchmark 17 leading LLMs, spanning open-source, closed-source, and finance-specialized models, under both ground-truth context and retrieval-augmented settings. Results show substantial performance degradation, with accuracy dropping by 18.60% and 14.35% as tasks shift from single-document reasoning to longitudinal and cross-entity analysis. This is driven by rising comparison hallucinations, time and entity mismatches, and mirrored by declines in reasoning and factuality--limitations that prior benchmarks have yet to formally categorize or quantify.
Spoken content, such as online videos and podcasts, often spans multiple topics, which makes automatic topic segmentation essential for user navigation and downstream applications. However, current methods do not fully leverage acoustic features, leaving room for improvement. We propose a multi-modal approach that fine-tunes both a text encoder and a Siamese audio encoder, capturing acoustic cues around sentence boundaries. Experiments on a large-scale dataset of YouTube videos show substantial gains over text-only and multi-modal baselines. Our model also proves more resilient to ASR noise and outperforms a larger text-only baseline on three additional datasets in Portuguese, German, and English, underscoring the value of learned acoustic features for robust topic segmentation.
Large language models can resist task-misaligned activation steering during inference, sometimes recovering mid-generation to produce improved responses even when steering remains active. We term this Endogenous Steering Resistance (ESR). Using sparse autoencoder (SAE) latents to steer model activations, we find that Llama-3.3-70B shows substantial ESR, while smaller models from the Llama-3 and Gemma-2 families exhibit the phenomenon less frequently. We identify 26 SAE latents that activate differentially during off-topic content and are causally linked to ESR in Llama-3.3-70B. Zero-ablating these latents reduces the multi-attempt rate by 25%, providing causal evidence for dedicated internal consistency-checking circuits. We demonstrate that ESR can be deliberately enhanced through both prompting and training: meta-prompts instructing the model to self-monitor increase the multi-attempt rate by 4x for Llama-3.3-70B, and fine-tuning on self-correction examples successfully induces ESR-like behavior in smaller models. These findings have dual implications: ESR could protect against adversarial manipulation but might also interfere with beneficial safety interventions that rely on activation steering. Understanding and controlling these resistance mechanisms is important for developing transparent and controllable AI systems. Code is available at github.com/agencyenterprise/endogenous-steering-resistance.