Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Time Series Analysis": models, code, and papers

Motif Difference Field: A Simple and Effective Image Representation of Time Series for Classification

Jan 21, 2020
Yadong Zhang, Xin Chen

Time series motifs play an important role in the time series analysis. The motif-based time series clustering is used for the discovery of higher-order patterns or structures in time series data. Inspired by the convolutional neural network (CNN) classifier based on the image representations of time series, motif difference field (MDF) is proposed. Compared to other image representations of time series, MDF is simple and easy to construct. With the Fully Convolution Network (FCN) as the classifier, MDF demonstrates the superior performance on the UCR time series dataset in benchmark with other time series classification methods. It is interesting to find that the triadic time series motifs give the best result in the test. Due to the motif clustering reflected in MDF, the significant motifs are detected with the help of the Gradient-weighted Class Activation Mapping (Grad-CAM). The areas in MDF with high weight in Grad-CAM have a high contribution from the significant motifs with the desired ordinal patterns associated with the signature patterns in time series. However, the signature patterns cannot be identified with the neural network classifiers directly based on the time series.

  
Access Paper or Ask Questions

Highly comparative feature-based time-series classification

May 09, 2014
Ben D. Fulcher, Nick S. Jones

A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large datasets containing long time series or time series of different lengths. For many of the datasets studied, classification performance exceeded that of conventional instance-based classifiers, including one nearest neighbor classifiers using Euclidean distances and dynamic time warping and, most importantly, the features selected provide an understanding of the properties of the dataset, insight that can guide further scientific investigation.

* IEEE Trans. Knowl. Data Eng. 26, 3026 (2014) 
  
Access Paper or Ask Questions

Scalable Linear Causal Inference for Irregularly Sampled Time Series with Long Range Dependencies

Mar 10, 2016
Francois W. Belletti, Evan R. Sparks, Michael J. Franklin, Alexandre M. Bayen, Joseph E. Gonzalez

Linear causal analysis is central to a wide range of important application spanning finance, the physical sciences, and engineering. Much of the existing literature in linear causal analysis operates in the time domain. Unfortunately, the direct application of time domain linear causal analysis to many real-world time series presents three critical challenges: irregular temporal sampling, long range dependencies, and scale. Moreover, real-world data is often collected at irregular time intervals across vast arrays of decentralized sensors and with long range dependencies which make naive time domain correlation estimators spurious. In this paper we present a frequency domain based estimation framework which naturally handles irregularly sampled data and long range dependencies while enabled memory and communication efficient distributed processing of time series data. By operating in the frequency domain we eliminate the need to interpolate and help mitigate the effects of long range dependencies. We implement and evaluate our new work-flow in the distributed setting using Apache Spark and demonstrate on both Monte Carlo simulations and high-frequency financial trading that we can accurately recover causal structure at scale.

  
Access Paper or Ask Questions

On the balance between the training time and interpretability of neural ODE for time series modelling

Jun 07, 2022
Yakov Golovanev, Alexander Hvatov

Most machine learning methods are used as a black box for modelling. We may try to extract some knowledge from physics-based training methods, such as neural ODE (ordinary differential equation). Neural ODE has advantages like a possibly higher class of represented functions, the extended interpretability compared to black-box machine learning models, ability to describe both trend and local behaviour. Such advantages are especially critical for time series with complicated trends. However, the known drawback is the high training time compared to the autoregressive models and long-short term memory (LSTM) networks widely used for data-driven time series modelling. Therefore, we should be able to balance interpretability and training time to apply neural ODE in practice. The paper shows that modern neural ODE cannot be reduced to simpler models for time-series modelling applications. The complexity of neural ODE is compared to or exceeds the conventional time-series modelling tools. The only interpretation that could be extracted is the eigenspace of the operator, which is an ill-posed problem for a large system. Spectra could be extracted using different classical analysis methods that do not have the drawback of extended time. Consequently, we reduce the neural ODE to a simpler linear form and propose a new view on time-series modelling using combined neural networks and an ODE system approach.

  
Access Paper or Ask Questions

Time Series Cluster Kernel for Learning Similarities between Multivariate Time Series with Missing Data

Jun 29, 2017
Karl ร˜yvind Mikalsen, Filippo Maria Bianchi, Cristina Soguero-Ruiz, Robert Jenssen

Similarity-based approaches represent a promising direction for time series analysis. However, many such methods rely on parameter tuning, and some have shortcomings if the time series are multivariate (MTS), due to dependencies between attributes, or the time series contain missing data. In this paper, we address these challenges within the powerful context of kernel methods by proposing the robust \emph{time series cluster kernel} (TCK). The approach taken leverages the missing data handling properties of Gaussian mixture models (GMM) augmented with informative prior distributions. An ensemble learning approach is exploited to ensure robustness to parameters by combining the clustering results of many GMM to form the final kernel. We evaluate the TCK on synthetic and real data and compare to other state-of-the-art techniques. The experimental results demonstrate that the TCK is robust to parameter choices, provides competitive results for MTS without missing data and outstanding results for missing data.

* 23 pages, 6 figures 
  
Access Paper or Ask Questions

Cross-Recurrence Quantification Analysis of Categorical and Continuous Time Series: an R package

Oct 03, 2013
Moreno I. Coco, Rick Dale

This paper describes the R package crqa to perform cross-recurrence quantification analysis of two time series of either a categorical or continuous nature. Streams of behavioral information, from eye movements to linguistic elements, unfold over time. When two people interact, such as in conversation, they often adapt to each other, leading these behavioral levels to exhibit recurrent states. In dialogue, for example, interlocutors adapt to each other by exchanging interactive cues: smiles, nods, gestures, choice of words, and so on. In order for us to capture closely the goings-on of dynamic interaction, and uncover the extent of coupling between two individuals, we need to quantify how much recurrence is taking place at these levels. Methods available in crqa would allow researchers in cognitive science to pose such questions as how much are two people recurrent at some level of analysis, what is the characteristic lag time for one person to maximally match another, or whether one person is leading another. First, we set the theoretical ground to understand the difference between 'correlation' and 'co-visitation' when comparing two time series, using an aggregative or cross-recurrence approach. Then, we describe more formally the principles of cross-recurrence, and show with the current package how to carry out analyses applying them. We end the paper by comparing computational efficiency, and results' consistency, of crqa R package, with the benchmark MATLAB toolbox crptoolbox. We show perfect comparability between the two libraries on both levels.

  
Access Paper or Ask Questions

Monash Time Series Forecasting Archive

May 14, 2021
Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, Pablo Montero-Manso

Many businesses and industries nowadays rely on large quantities of time series data making time series forecasting an important research area. Global forecasting models that are trained across sets of time series have shown a huge potential in providing accurate forecasts compared with the traditional univariate forecasting models that work on isolated series. However, there are currently no comprehensive time series archives for forecasting that contain datasets of time series from similar sources available for the research community to evaluate the performance of new global forecasting algorithms over a wide variety of datasets. In this paper, we present such a comprehensive time series forecasting archive containing 20 publicly available time series datasets from varied domains, with different characteristics in terms of frequency, series lengths, and inclusion of missing values. We also characterise the datasets, and identify similarities and differences among them, by conducting a feature analysis. Furthermore, we present the performance of a set of standard baseline forecasting methods over all datasets across eight error metrics, for the benefit of researchers using the archive to benchmark their forecasting algorithms.

* 33 pages, 3 figures, 15 tables 
  
Access Paper or Ask Questions

Efficient and Consistent Robust Time Series Analysis

Jul 01, 2016
Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, Purushottam Kar

We study the problem of robust time series analysis under the standard auto-regressive (AR) time series model in the presence of arbitrary outliers. We devise an efficient hard thresholding based algorithm which can obtain a consistent estimate of the optimal AR model despite a large fraction of the time series points being corrupted. Our algorithm alternately estimates the corrupted set of points and the model parameters, and is inspired by recent advances in robust regression and hard-thresholding methods. However, a direct application of existing techniques is hindered by a critical difference in the time-series domain: each point is correlated with all previous points rendering existing tools inapplicable directly. We show how to overcome this hurdle using novel proof techniques. Using our techniques, we are also able to provide the first efficient and provably consistent estimator for the robust regression problem where a standard linear observation model with white additive noise is corrupted arbitrarily. We illustrate our methods on synthetic datasets and show that our methods indeed are able to consistently recover the optimal parameters despite a large fraction of points being corrupted.

  
Access Paper or Ask Questions

Automatic time-series phenotyping using massive feature extraction

Dec 15, 2016
Ben D Fulcher, Nick S Jones

Across a far-reaching diversity of scientific and industrial applications, a general key problem involves relating the structure of time-series data to a meaningful outcome, such as detecting anomalous events from sensor recordings, or diagnosing patients from physiological time-series measurements like heart rate or brain activity. Currently, researchers must devote considerable effort manually devising, or searching for, properties of their time series that are suitable for the particular analysis problem at hand. Addressing this non-systematic and time-consuming procedure, here we introduce a new tool, hctsa, that selects interpretable and useful properties of time series automatically, by comparing implementations over 7700 time-series features drawn from diverse scientific literatures. Using two exemplar biological applications, we show how hctsa allows researchers to leverage decades of time-series research to quantify and understand informative structure in their time-series data.

* Cell Systems 5 (2017) 527 
  
Access Paper or Ask Questions

A fast algorithm for complex discord searches in time series: HOT SAX Time

Jan 26, 2021
Paolo Avogadro, Matteo Alessandro Dominoni

Time series analysis is quickly proceeding towards long and complex tasks. In recent years, fast approximate algorithms for discord search have been proposed in order to compensate for the increasing size of the time series. It is more interesting, however, to find quick exact solutions. In this research, we improved HOT SAX by exploiting two main ideas: the warm-up process, and the similarity between sequences close in time. The resulting algorithm, called HOT SAX Time (HST), has been validated with real and synthetic time series, and successfully compared with HOT SAX, RRA, SCAMP, and DADD. The complexity of a discord search has been evaluated with a new indicator, the cost per sequence (cps), which allows one to compare searches on time series of different lengths. Numerical evidence suggests that two conditions are involved in determining the complexity of a discord search in a non-trivial way: the length of the discords, and the noise/signal ratio. In the case of complex searches, HST can be more than 100 times faster than HOT SAX, thus being at the forefront of the exact discord search.

  
Access Paper or Ask Questions
<<
2
3
4
5
6
7
8
9
10
11
12
13
14
>>