Abstract:Background and Objectives: Multidrug Resistance (MDR) is a critical global health issue, causing increased hospital stays, healthcare costs, and mortality. This study proposes an interpretable Machine Learning (ML) framework for MDR prediction, aiming for both accurate inference and enhanced explainability. Methods: Patients are modeled as Multivariate Time Series (MTS), capturing clinical progression and patient-to-patient interactions. Similarity among patients is quantified using MTS-based methods: descriptive statistics, Dynamic Time Warping, and Time Cluster Kernel. These similarity measures serve as inputs for MDR classification via Logistic Regression, Random Forest, and Support Vector Machines, with dimensionality reduction and kernel transformations improving model performance. For explainability, patient similarity networks are constructed from these metrics. Spectral clustering and t-SNE are applied to identify MDR-related subgroups and visualize high-risk clusters, enabling insight into clinically relevant patterns. Results: The framework was validated on ICU Electronic Health Records from the University Hospital of Fuenlabrada, achieving an AUC of 81%. It outperforms baseline ML and deep learning models by leveraging graph-based patient similarity. The approach identifies key risk factors -- prolonged antibiotic use, invasive procedures, co-infections, and extended ICU stays -- and reveals clinically meaningful clusters. Code and results are available at \https://github.com/oscarescuderoarnanz/DM4MTS. Conclusions: Patient similarity representations combined with graph-based analysis provide accurate MDR prediction and interpretable insights. This method supports early detection, risk factor identification, and patient stratification, highlighting the potential of explainable ML in critical care.
Abstract:Electronic health records (EHR) is an inherently multimodal register of the patient's health status characterized by static data and multivariate time series (MTS). While MTS are a valuable tool for clinical prediction, their fusion with other data modalities can possibly result in more thorough insights and more accurate results. Deep neural networks (DNNs) have emerged as fundamental tools for identifying and defining underlying patterns in the healthcare domain. However, fundamental improvements in interpretability are needed for DNN models to be widely used in the clinical setting. In this study, we present an approach built on a collection of interpretable multimodal data-driven models that may anticipate and understand the emergence of antimicrobial multidrug resistance (AMR) germs in the intensive care unit (ICU) of the University Hospital of Fuenlabrada (Madrid, Spain). The profile and initial health status of the patient are modeled using static variables, while the evolution of the patient's health status during the ICU stay is modeled using several MTS, including mechanical ventilation and antibiotics intake. The multimodal DNNs models proposed in this paper include interpretable principles in addition to being effective at predicting AMR and providing an explainable prediction support system for AMR in the ICU. Furthermore, our proposed methodology based on multimodal models and interpretability schemes can be leveraged in additional clinical problems dealing with EHR data, broadening the impact and applicability of our results.