Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

HSR: Hyperbolic Social Recommender

Feb 15, 2021
Anchen Li, Bo Yang

With the prevalence of online social media, users' social connections have been widely studied and utilized to enhance the performance of recommender systems. In this paper, we explore the use of hyperbolic geometry for social recommendation. We present Hyperbolic Social Recommender (HSR), a novel social recommendation framework that utilizes hyperbolic geometry to boost the performance. With the help of hyperbolic spaces, HSR can learn high-quality user and item representations for better modeling user-item interaction and user-user social relations. Via a series of extensive experiments, we show that our proposed HSR outperforms its Euclidean counterpart and state-of-the-art social recommenders in click-through rate prediction and top-K recommendation, demonstrating the effectiveness of social recommendation in the hyperbolic space.

  Access Paper or Ask Questions

Natural Language Processing via LDA Topic Model in Recommendation Systems

Sep 20, 2019
Hamed Jelodar, Yongli Wang, Mahdi Rabbani, SeyedValyAllah Ayobi

Today, Internet is one of the widest available media worldwide. Recommendation systems are increasingly being used in various applications such as movie recommendation, mobile recommendation, article recommendation and etc. Collaborative Filtering (CF) and Content-Based (CB) are Well-known techniques for building recommendation systems. Topic modeling based on LDA, is a powerful technique for semantic mining and perform topic extraction. In the past few years, many articles have been published based on LDA technique for building recommendation systems. In this paper, we present taxonomy of recommendation systems and applications based on LDA. In addition, we utilize LDA and Gibbs sampling algorithms to evaluate ISWC and WWW conference publications in computer science. Our study suggest that the recommendation systems based on LDA could be effective in building smart recommendation system in online communities.

  Access Paper or Ask Questions

Enumerating Fair Packages for Group Recommendations

May 30, 2021
Ryoma Sato

In package recommendations, a set of items is regarded as a unified package towards a single common goal, whereas conventional recommender systems treat items independently. For example, for music playlist recommendations, each package (i.e., playlist) should be consistent with respect to the genres. In group recommendations, items are recommended to a group of users, whereas conventional recommender systems recommend items to an individual user. Different from the conventional settings, it is difficult to measure the utility of group recommendations because it involves more than one user. In particular, fairness is crucial in group recommendations. Even if some members in a group are substantially satisfied with a recommendation, it is undesirable if other members are ignored to increase the total utility. Various methods for evaluating and applying the fairness of group recommendations have been proposed in the literature. However, all these methods maximize the score and output only a single package. This is in contrast to conventional recommender systems, which output several (e.g., top-$K$) candidates. This can be problematic because a group can be dissatisfied with the recommended package owing to some unobserved reasons, even if the score is high. In particular, each fairness measure is not absolute, and users may call for different fairness criteria than the one adopted in the recommender system in operation. To address this issue, we propose a method to enumerate fair packages so that a group can select their favorite packages from the list. Our proposed method can enumerate fair packages efficiently, and users can search their favorite packages by various filtering queries. We confirm that our algorithm scales to large datasets and can balance several aspects of the utility of the packages.

  Access Paper or Ask Questions

Collaborative Personalized Web Recommender System using Entropy based Similarity Measure

Jan 20, 2012
Harita Mehta, Shveta Kundra Bhatia, Punam Bedi, V. S. Dixit

On the internet, web surfers, in the search of information, always strive for recommendations. The solutions for generating recommendations become more difficult because of exponential increase in information domain day by day. In this paper, we have calculated entropy based similarity between users to achieve solution for scalability problem. Using this concept, we have implemented an online user based collaborative web recommender system. In this model based collaborative system, the user session is divided into two levels. Entropy is calculated at both the levels. It is shown that from the set of valuable recommenders obtained at level I; only those recommenders having lower entropy at level II than entropy at level I, served as trustworthy recommenders. Finally, top N recommendations are generated from such trustworthy recommenders for an online user.

* IJCSI, Vol 8, Issue 6, No 3, Nov 2011 
* 10 pages 

  Access Paper or Ask Questions

A Survey on Personality-Aware Recommendation Systems

Jan 28, 2021
Sahraoui Dhelim, Nyothiri Aung, Mohammed Amine Bouras, Huansheng Ning, Erik Cambria

With the emergence of personality computing as a new research field related to artificial intelligence and personality psychology, we have witnessed an unprecedented proliferation of personality-aware recommendation systems. Unlike conventional recommendation systems, these new systems solve traditional problems such as the cold start and data sparsity problems. This survey aims to study and systematically classify personality-aware recommendation systems. To the best of our knowledge, this survey is the first that focuses on personality-aware recommendation systems. We explore the different design choices of personality-aware recommendation systems, by comparing their personality modeling methods, as well as their recommendation techniques. Furthermore, we present the commonly used datasets and point out some of the challenges of personality-aware recommendation systems.

* Under review in Artificial Intelligence Review 

  Access Paper or Ask Questions

User Tampering in Reinforcement Learning Recommender Systems

Sep 09, 2021
Charles Evans, Atoosa Kasirzadeh

This paper provides the first formalisation and empirical demonstration of a particular safety concern in reinforcement learning (RL)-based news and social media recommendation algorithms. This safety concern is what we call "user tampering" -- a phenomenon whereby an RL-based recommender system may manipulate a media user's opinions, preferences and beliefs via its recommendations as part of a policy to increase long-term user engagement. We provide a simulation study of a media recommendation problem constrained to the recommendation of political content, and demonstrate that a Q-learning algorithm consistently learns to exploit its opportunities to 'polarise' simulated 'users' with its early recommendations in order to have more consistent success with later recommendations catering to that polarisation. Finally, we argue that given our findings, designing an RL-based recommender system which cannot learn to exploit user tampering requires making the metric for the recommender's success independent of observable signals of user engagement, and thus that a media recommendation system built solely with RL is necessarily either unsafe, or almost certainly commercially unviable.

* Accepted for presentation at the 4th FAccTRec Workshop on Responsible Recommendation (FAccTRec '21) 

  Access Paper or Ask Questions

Making Recommender Systems Forget: Learning and Unlearning for Erasable Recommendation

Mar 22, 2022
Yuyuan Li, Xiaolin Zheng, Chaochao Chen, Junlin Liu

Privacy laws and regulations enforce data-driven systems, e.g., recommender systems, to erase the data that concern individuals. As machine learning models potentially memorize the training data, data erasure should also unlearn the data lineage in models, which raises increasing interest in the problem of Machine Unlearning (MU). However, existing MU methods cannot be directly applied into recommendation. The basic idea of most recommender systems is collaborative filtering, but existing MU methods ignore the collaborative information across users and items. In this paper, we propose a general erasable recommendation framework, namely LASER, which consists of Group module and SeqTrain module. Firstly, Group module partitions users into balanced groups based on their similarity of collaborative embedding learned via hypergraph. Then SeqTrain module trains the model sequentially on all groups with curriculum learning. Both theoretical analysis and experiments on two real-world datasets demonstrate that LASER can not only achieve efficient unlearning, but also outperform the state-of-the-art unlearning framework in terms of model utility.

  Access Paper or Ask Questions

The Architecture of Mr. DLib's Scientific Recommender-System API

Nov 26, 2018
Joeran Beel, Andrew Collins, Akiko Aizawa

Recommender systems in academia are not widely available. This may be in part due to the difficulty and cost of developing and maintaining recommender systems. Many operators of academic products such as digital libraries and reference managers avoid this effort, although a recommender system could provide significant benefits to their users. In this paper, we introduce Mr. DLib's "Recommendations as-a-Service" (RaaS) API that allows operators of academic products to easily integrate a scientific recommender system into their products. Mr. DLib generates recommendations for research articles but in the future, recommendations may include call for papers, grants, etc. Operators of academic products can request recommendations from Mr. DLib and display these recommendations to their users. Mr. DLib can be integrated in just a few hours or days; creating an equivalent recommender system from scratch would require several months for an academic operator. Mr. DLib has been used by GESIS Sowiport and by the reference manager JabRef. Mr. DLib is open source and its goal is to facilitate the application of, and research on, scientific recommender systems. In this paper, we present the motivation for Mr. DLib, the architecture and details about the effectiveness. Mr. DLib has delivered 94m recommendations over a span of two years with an average click-through rate of 0.12%.

  Access Paper or Ask Questions

An MDP-based Recommender System

May 16, 2015
Guy Shani, Ronen I. Brafman, David Heckerman

Typical Recommender systems adopt a static view of the recommendation process and treat it as a prediction problem. We argue that it is more appropriate to view the problem of generating recommendations as a sequential decision problem and, consequently, that Markov decision processes (MDP) provide a more appropriate model for Recommender systems. MDPs introduce two benefits: they take into account the long-term effects of each recommendation, and they take into account the expected value of each recommendation. To succeed in practice, an MDP-based Recommender system must employ a strong initial model; and the bulk of this paper is concerned with the generation of such a model. In particular, we suggest the use of an n-gram predictive model for generating the initial MDP. Our n-gram model induces a Markov-chain model of user behavior whose predictive accuracy is greater than that of existing predictive models. We describe our predictive model in detail and evaluate its performance on real data. In addition, we show how the model can be used in an MDP-based Recommender system.

* Appears in Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI2002) 

  Access Paper or Ask Questions

Feature Interaction Interpretability: A Case for Explaining Ad-Recommendation Systems via Neural Interaction Detection

Jun 19, 2020
Michael Tsang, Dehua Cheng, Hanpeng Liu, Xue Feng, Eric Zhou, Yan Liu

Recommendation is a prevalent application of machine learning that affects many users; therefore, it is important for recommender models to be accurate and interpretable. In this work, we propose a method to both interpret and augment the predictions of black-box recommender systems. In particular, we propose to interpret feature interactions from a source recommender model and explicitly encode these interactions in a target recommender model, where both source and target models are black-boxes. By not assuming the structure of the recommender system, our approach can be used in general settings. In our experiments, we focus on a prominent use of machine learning recommendation: ad-click prediction. We found that our interaction interpretations are both informative and predictive, e.g., significantly outperforming existing recommender models. What's more, the same approach to interpret interactions can provide new insights into domains even beyond recommendation, such as text and image classification.

* Published in ICLR 2020 

  Access Paper or Ask Questions