Information extraction is the process of automatically extracting structured information from unstructured text data.
Self-supervised learning has become a central strategy for representation learning, but the majority of architectures used for encoding data have only been validated on regularly-sampled inputs such as images, audios. and videos. In many scientific domains, data instead arrive as long, irregular, and multimodal sequences. To extract semantic information from these data, we introduce the Diffusion Autoencoder with Perceivers (daep). daep tokenizes heterogeneous measurements, compresses them with a Perceiver encoder, and reconstructs them with a Perceiver-IO diffusion decoder, enabling scalable learning in diverse data settings. To benchmark the daep architecture, we adapt the masked autoencoder to a Perceiver encoder/decoder design, and establish a strong baseline (maep) in the same architectural family as daep. Across diverse spectroscopic and photometric astronomical datasets, daep achieves lower reconstruction errors, produces more discriminative latent spaces, and better preserves fine-scale structure than both VAE and maep baselines. These results establish daep as an effective framework for scientific domains where data arrives as irregular, heterogeneous sequences.
Deep learning has emerged as a transformative methodology in modern cosmology, providing powerful tools to extract meaningful physical information from complex astronomical datasets. This paper implements a novel Bayesian graph deep learning framework for estimating key cosmological parameters in a primordial magnetic field (PMF) cosmology directly from simulated Cosmic Microwave Background (CMB) maps. Our methodology utilizes DeepSphere, a spherical convolutional neural network architecture specifically designed to respect the spherical geometry of CMB data through HEALPix pixelization. To advance beyond deterministic point estimates and enable robust uncertainty quantification, we integrate Bayesian Neural Networks (BNNs) into the framework, capturing aleatoric and epistemic uncertainties that reflect the model confidence in its predictions. The proposed approach demonstrates exceptional performance, achieving $R^{2}$ scores exceeding 0.89 for the magnetic parameter estimation. We further obtain well-calibrated uncertainty estimates through post-hoc training techniques including Variance Scaling and GPNormal. This integrated DeepSphere-BNNs framework not only delivers accurate parameter estimation from CMB maps with PMF contributions but also provides reliable uncertainty quantification, providing the necessary tools for robust cosmological inference in the era of precision cosmology.
Objective: Fluoropyrimidines are widely prescribed for colorectal and breast cancers, but are associated with toxicities such as hand-foot syndrome and cardiotoxicity. Since toxicity documentation is often embedded in clinical notes, we aimed to develop and evaluate natural language processing (NLP) methods to extract treatment and toxicity information. Materials and Methods: We constructed a gold-standard dataset of 236 clinical notes from 204,165 adult oncology patients. Domain experts annotated categories related to treatment regimens and toxicities. We developed rule-based, machine learning-based (Random Forest, Support Vector Machine [SVM], Logistic Regression [LR]), deep learning-based (BERT, ClinicalBERT), and large language models (LLM)-based NLP approaches (zero-shot and error-analysis prompting). Models used an 80:20 train-test split. Results: Sufficient data existed to train and evaluate 5 annotated categories. Error-analysis prompting achieved optimal precision, recall, and F1 scores (F1=1.000) for treatment and toxicities extraction, whereas zero-shot prompting reached F1=1.000 for treatment and F1=0.876 for toxicities extraction.LR and SVM ranked second for toxicities (F1=0.937). Deep learning underperformed, with BERT (F1=0.873 treatment; F1= 0.839 toxicities) and ClinicalBERT (F1=0.873 treatment; F1 = 0.886 toxicities). Rule-based methods served as our baseline with F1 scores of 0.857 in treatment and 0.858 in toxicities. Discussion: LMM-based approaches outperformed all others, followed by machine learning methods. Machine and deep learning approaches were limited by small training data and showed limited generalizability, particularly for rare categories. Conclusion: LLM-based NLP most effectively extracted fluoropyrimidine treatment and toxicity information from clinical notes, and has strong potential to support oncology research and pharmacovigilance.
Natural language has long enabled human cooperation, but its lossy, ambiguous, and indirect nature limits the potential of collective intelligence. While machines are not subject to these constraints, most LLM-based multi-agent systems still rely solely on natural language, exchanging tokens or their embeddings. To go beyond language, we introduce a new paradigm, thought communication, which enables agents to interact directly mind-to-mind, akin to telepathy. To uncover these latent thoughts in a principled way, we formalize the process as a general latent variable model, where agent states are generated by an unknown function of underlying thoughts. We prove that, in a nonparametric setting without auxiliary information, both shared and private latent thoughts between any pair of agents can be identified. Moreover, the global structure of thought sharing, including which agents share which thoughts and how these relationships are structured, can also be recovered with theoretical guarantees. Guided by the established theory, we develop a framework that extracts latent thoughts from all agents prior to communication and assigns each agent the relevant thoughts, along with their sharing patterns. This paradigm naturally extends beyond LLMs to all modalities, as most observational data arise from hidden generative processes. Experiments on both synthetic and real-world benchmarks validate the theory and demonstrate the collaborative advantages of thought communication. We hope this work illuminates the potential of leveraging the hidden world, as many challenges remain unsolvable through surface-level observation alone, regardless of compute or data scale.
Robotic manipulation systems benefit from complementary sensing modalities, where each provides unique environmental information. Point clouds capture detailed geometric structure, while RGB images provide rich semantic context. Current point cloud methods struggle to capture fine-grained detail, especially for complex tasks, which RGB methods lack geometric awareness, which hinders their precision and generalization. We introduce PointMapPolicy, a novel approach that conditions diffusion policies on structured grids of points without downsampling. The resulting data type makes it easier to extract shape and spatial relationships from observations, and can be transformed between reference frames. Yet due to their structure in a regular grid, we enable the use of established computer vision techniques directly to 3D data. Using xLSTM as a backbone, our model efficiently fuses the point maps with RGB data for enhanced multi-modal perception. Through extensive experiments on the RoboCasa and CALVIN benchmarks and real robot evaluations, we demonstrate that our method achieves state-of-the-art performance across diverse manipulation tasks. The overview and demos are available on our project page: https://point-map.github.io/Point-Map/
Current large language models (LLMs) often suffer from hallucination issues, i,e, generating content that appears factual but is actually unreliable. A typical hallucination detection pipeline involves response decomposition (i.e., claim extraction), query generation, evidence collection (i.e., search or retrieval), and claim verification. However, existing methods exhibit limitations in the first two stages, such as context loss during claim extraction and low specificity in query generation, resulting in degraded performance across the hallucination detection pipeline. In this work, we introduce JointCQ https://github.com/pku0xff/JointCQ, a joint claim-and-query generation framework designed to construct an effective and efficient claim-query generator. Our framework leverages elaborately designed evaluation criteria to filter synthesized training data, and finetunes a language model for joint claim extraction and query generation, providing reliable and informative inputs for downstream search and verification. Experimental results demonstrate that our method outperforms previous methods on multiple open-domain QA hallucination detection benchmarks, advancing the goal of more trustworthy and transparent language model systems.
Designing document identifiers (docids) that carry rich semantic information while maintaining tractable search spaces is a important challenge in generative retrieval (GR). Popular codebook methods address this by building a hierarchical semantic tree and constraining generation to its child nodes, yet their numeric identifiers cannot leverage the large language model's pretrained natural language understanding. Conversely, using text as docid provides more semantic expressivity but inflates the decoding space, making the system brittle to early-step errors. To resolve this trade-off, we propose C2T-ID: (i) first construct semantic numerical docid via hierarchical clustering; (ii) then extract high-frequency metadata keywords and iteratively replace each numeric label with its cluster's top-K keywords; and (iii) an optional two-level semantic smoothing step further enhances the fluency of C2T-ID. Experiments on Natural Questions and Taobao's product search demonstrate that C2T-ID significantly outperforms atomic, semantic codebook, and pure-text docid baselines, demonstrating its effectiveness in balancing semantic expressiveness with search space constraints.
In the past decade, the adoption of compact 3D range sensors, such as LiDARs, has driven the developments of robust state-estimation pipelines, making them a standard sensor for aerial, ground, and space autonomy. Unfortunately, poor propagation of electromagnetic waves underwater, has limited the visibility-independent sensing options of underwater state-estimation to acoustic range sensors, which provide 2D information including, at-best, spatially ambiguous information. This paper, to the best of our knowledge, is the first study examining the performance, capacity, and opportunities arising from the recent introduction of the first compact 3D sonar. Towards that purpose, we introduce calibration procedures for extracting the extrinsics between the 3D sonar and a camera and we provide a study on acoustic response in different surfaces and materials. Moreover, we provide novel mapping and SLAM pipelines tested in deployments in underwater cave systems and other geometrically and acoustically challenging underwater environments. Our assessment showcases the unique capacity of 3D sonars to capture consistent spatial information allowing for detailed reconstructions and localization in datasets expanding to hundreds of meters. At the same time it highlights remaining challenges related to acoustic propagation, as found also in other acoustic sensors. Datasets collected for our evaluations would be released and shared with the community to enable further research advancements.
Earth observation involves collecting, analyzing, and processing an ever-growing mass of data. Automatically harvesting information is crucial for addressing significant societal, economic, and environmental challenges, ranging from environmental monitoring to urban planning and disaster management. However, the high dimensionality of these data poses challenges in terms of sparsity, inefficiency, and the curse of dimensionality, which limits the effectiveness of machine learning models. Dimensionality reduction (DR) techniques, specifically feature extraction, address these challenges by preserving essential data properties while reducing complexity and enhancing tasks such as data compression, cleaning, fusion, visualization, anomaly detection, and prediction. This review provides a handbook for leveraging DR across the RS data value chain and identifies opportunities for under-explored DR algorithms and their application in future research.
The vision-based grasping brain network integrates visual perception with cognitive and motor processes for visuomotor tasks. While invasive recordings have successfully decoded localized neural activity related to grasp type planning and execution, macroscopic neural activation patterns captured by noninvasive electroencephalography (EEG) remain far less understood. We introduce a novel vision-based grasping platform to investigate grasp-type-specific (precision, power, no-grasp) neural activity across large-scale brain networks using EEG neuroimaging. The platform isolates grasp-specific planning from its associated execution phases in naturalistic visuomotor tasks, where the Filter-Bank Common Spatial Pattern (FBCSP) technique was designed to extract discriminative frequency-specific features within each phase. Support vector machine (SVM) classification discriminated binary (precision vs. power, grasp vs. no-grasp) and multiclass (precision vs. power vs. no-grasp) scenarios for each phase, and were compared against traditional Movement-Related Cortical Potential (MRCP) methods. Low-frequency oscillations (0.5-8 Hz) carry grasp-related information established during planning and maintained throughout execution, with consistent classification performance across both phases (75.3-77.8\%) for precision vs. power discrimination, compared to 61.1\% using MRCP. Higher-frequency activity (12-40 Hz) showed phase-dependent results with 93.3\% accuracy for grasp vs. no-grasp classification but 61.2\% for precision vs. power discrimination. Feature importance using SVM coefficients identified discriminative features within frontoparietal networks during planning and motor networks during execution. This work demonstrated the role of low-frequency oscillations in decoding grasp type during planning using noninvasive EEG.