Information extraction is the process of automatically extracting structured information from unstructured text data.
Data-driven approaches using deep learning are emerging as powerful techniques to extract non-Gaussian information from cosmological large-scale structure. This work presents the first simulation-based inference (SBI) pipeline that combines weak lensing and galaxy clustering maps in a realistic Dark Energy Survey Year 3 (DES Y3) configuration and serves as preparation for a forthcoming analysis of the survey data. We develop a scalable forward model based on the CosmoGridV1 suite of N-body simulations to generate over one million self-consistent mock realizations of DES Y3 at the map level. Leveraging this large dataset, we train deep graph convolutional neural networks on the full survey footprint in spherical geometry to learn low-dimensional features that approximately maximize mutual information with target parameters. These learned compressions enable neural density estimation of the implicit likelihood via normalizing flows in a ten-dimensional parameter space spanning cosmological $w$CDM, intrinsic alignment, and linear galaxy bias parameters, while marginalizing over baryonic, photometric redshift, and shear bias nuisances. To ensure robustness, we extensively validate our inference pipeline using synthetic observations derived from both systematic contaminations in our forward model and independent Buzzard galaxy catalogs. Our forecasts yield significant improvements in cosmological parameter constraints, achieving $2-3\times$ higher figures of merit in the $\Omega_m - S_8$ plane relative to our implementation of baseline two-point statistics and effectively breaking parameter degeneracies through probe combination. These results demonstrate the potential of SBI analyses powered by deep learning for upcoming Stage-IV wide-field imaging surveys.
1. A hard stop for the implementation of rigorous conservation initiatives is our lack of key species data, especially occurrence data. Furthermore, researchers have to contend with an accelerated speed at which new information must be collected and processed due to anthropogenic activity. Publications ranging from scientific papers to gray literature contain this crucial information but their data are often not machine-readable, requiring extensive human work to be retrieved. 2. We present the ARETE R package, an open-source software aiming to automate data extraction of species occurrences powered by large language models, namely using the chatGPT Application Programming Interface. This R package integrates all steps of the data extraction and validation process, from Optical Character Recognition to detection of outliers and output in tabular format. Furthermore, we validate ARETE through systematic comparison between what is modelled and the work of human annotators. 3. We demonstrate the usefulness of the approach by comparing range maps produced using GBIF data and with those automatically extracted for 100 species of spiders. Newly extracted data allowed to expand the known Extent of Occurrence by a mean three orders of magnitude, revealing new areas where the species were found in the past, which mayhave important implications for spatial conservation planning and extinction risk assessments. 4. ARETE allows faster access to hitherto untapped occurrence data, a potential game changer in projects requiring such data. Researchers will be able to better prioritize resources, manually verifying selected species while maintaining automated extraction for the majority. This workflow also allows predicting available bibliographic data during project planning.
We present a framework that combines Large Language Models with computational image analytics for non-invasive, zero-shot prediction of IDH mutation status in brain gliomas. For each subject, coregistered multi-parametric MRI scans and multi-class tumor segmentation maps were processed to extract interpretable semantic (visual) attributes and quantitative features, serialized in a standardized JSON file, and used to query GPT 4o and GPT 5 without fine-tuning. We evaluated this framework on six publicly available datasets (N = 1427) and results showcased high accuracy and balanced classification performance across heterogeneous cohorts, even in the absence of manual annotations. GPT 5 outperformed GPT 4o in context-driven phenotype interpretation. Volumetric features emerged as the most important predictors, supplemented by subtype-specific imaging markers and clinical information. Our results demonstrate the potential of integrating LLM-based reasoning with computational image analytics for precise, non-invasive tumor genotyping, advancing diagnostic strategies in neuro-oncology. The code is available at https://github.com/ATPLab-LUMS/CIM-LLM.
Integrated Sensing and Communication (ISAC) has been identified as a key 6G application by ITU and 3GPP. A realistic, standard-compatible channel model is essential for ISAC system design. To characterize the impact of Sensing Targets (STs), 3GPP defines ISAC channel as a combination of target and background channels, comprising multipath components related to STs and those originating solely from the environment, respectively. Although the background channel does not carry direct ST information, its accurate modeling is critical for evaluating sensing performance, especially in complex environments. Existing communication standards characterize propagation between separated transmitter (Tx) and receiver (Rx). However, modeling background channels in the ISAC monostatic mode, where the Tx and Rx are co-located, remains a pressing challenge. In this paper, we firstly conduct ISAC monostatic background channel measurements for an indoor scenario at 28 GHz. Realistic channel parameters are extracted, revealing pronounced single-hop propagation and discrete multipath distribution. Inspired by these properties, a novel stochastic model is proposed to characterizing the ISAC monostatic background channel as the superposition of sub-channels between the monostatic Tx&Rx and multiple communication Rx-like Reference Points (RPs). This model is compatible with standardizations, and a 3GPP-extended implementation framework is introduced. Finally, a genetic algorithm-based method is proposed to extract the optimal number and placement of multi-RPs. The optimization approach and modeling framework are validated by comparing measured and simulated channel parameters. Results demonstrate that the proposed model effectively captures monostatic background channel characteristics, addresses a critical gap in ISAC channel modeling, and supports 6G standardization.
Brain-to-speech (BTS) systems represent a groundbreaking approach to human communication by enabling the direct transformation of neural activity into linguistic expressions. While recent non-invasive BTS studies have largely focused on decoding predefined words or sentences, achieving open-vocabulary neural communication comparable to natural human interaction requires decoding unconstrained speech. Additionally, effectively integrating diverse signals derived from speech is crucial for developing personalized and adaptive neural communication and rehabilitation solutions for patients. This study investigates the potential of speech synthesis for previously unseen sentences across various speech modes by leveraging phoneme-level information extracted from high-density electroencephalography (EEG) signals, both independently and in conjunction with electromyography (EMG) signals. Furthermore, we examine the properties affecting phoneme decoding accuracy during sentence reconstruction and offer neurophysiological insights to further enhance EEG decoding for more effective neural communication solutions. Our findings underscore the feasibility of biosignal-based sentence-level speech synthesis for reconstructing unseen sentences, highlighting a significant step toward developing open-vocabulary neural communication systems adapted to diverse patient needs and conditions. Additionally, this study provides meaningful insights into the development of communication and rehabilitation solutions utilizing EEG-based decoding technologies.
Deep neural networks (DNNs) have achieved remarkable success in computer vision tasks such as image classification, segmentation, and object detection. However, they are vulnerable to adversarial attacks, which can cause incorrect predictions with small perturbations in input images. Addressing this issue is crucial for deploying robust deep-learning systems. This paper presents a novel approach that utilizes contrastive learning for adversarial defense, a previously unexplored area. Our method leverages the contrastive loss function to enhance the robustness of classification models by training them with both clean and adversarially perturbed images. By optimizing the model's parameters alongside the perturbations, our approach enables the network to learn robust representations that are less susceptible to adversarial attacks. Experimental results show significant improvements in the model's robustness against various types of adversarial perturbations. This suggests that contrastive loss helps extract more informative and resilient features, contributing to the field of adversarial robustness in deep learning.
Event logs extracted from information systems offer a rich foundation for understanding and improving business processes. In many real-world applications, it is possible to distinguish between desirable and undesirable process executions, where desirable traces reflect efficient or compliant behavior, and undesirable ones may involve inefficiencies, rule violations, delays, or resource waste. This distinction presents an opportunity to guide process discovery in a more outcome-aware manner. Discovering a single process model without considering outcomes can yield representations poorly suited for conformance checking and performance analysis, as they fail to capture critical behavioral differences. Moreover, prioritizing one behavior over the other may obscure structural distinctions vital for understanding process outcomes. By learning interpretable discriminative rules over control-flow features, we group traces with similar desirability profiles and apply process discovery separately within each group. This results in focused and interpretable models that reveal the drivers of both desirable and undesirable executions. The approach is implemented as a publicly available tool and it is evaluated on multiple real-life event logs, demonstrating its effectiveness in isolating and visualizing critical process patterns.
Supervised learning is classically formulated as training a model to minimize a fixed loss function over a fixed distribution, or task. However, an emerging paradigm instead views model training as extracting enough information from data so that the model can be used to minimize many losses on many downstream tasks. We formalize a mathematical framework for this paradigm, which we call panprediction, and study its statistical complexity. Formally, panprediction generalizes omniprediction and sits upstream from multi-group learning, which respectively focus on predictions that generalize to many downstream losses or many downstream tasks, but not both. Concretely, we design algorithms that learn deterministic and randomized panpredictors with $\tilde{O}(1/\varepsilon^3)$ and $\tilde{O}(1/\varepsilon^2)$ samples, respectively. Our results demonstrate that under mild assumptions, simultaneously minimizing infinitely many losses on infinitely many tasks can be as statistically easy as minimizing one loss on one task. Along the way, we improve the best known sample complexity guarantee of deterministic omniprediction by a factor of $1/\varepsilon$, and match all other known sample complexity guarantees of omniprediction and multi-group learning. Our key technical ingredient is a nearly lossless reduction from panprediction to a statistically efficient notion of calibration, called step calibration.
This work presents an ontology-integrated large language model (LLM) framework for chemical engineering that unites structured domain knowledge with generative reasoning. The proposed pipeline aligns model training and inference with the COPE ontology through a sequence of data acquisition, semantic preprocessing, information extraction, and ontology mapping steps, producing templated question-answer pairs that guide fine-tuning. A control-focused decoding stage and citation gate enforce syntactic and factual grounding by constraining outputs to ontology-linked terms, while evaluation metrics quantify both linguistic quality and ontological accuracy. Feedback and future extensions, including semantic retrieval and iterative validation, further enhance the system's interpretability and reliability. This integration of symbolic structure and neural generation provides a transparent, auditable approach for applying LLMs to process control, safety analysis, and other critical engineering contexts.
The edge detection task is essential in image processing aiming to extract relevant information from an image. One recurring problem in this task is the weaknesses found in some detectors, such as the difficulty in detecting loose edges and the lack of context to extract relevant information from specific problems. To address these weaknesses and adapt the detector to the properties of an image, an adaptable detector described by two-dimensional cellular automaton and optimized by meta-heuristic combined with transfer learning techniques was developed. This study aims to analyze the impact of expanding the search space of the optimization phase and the robustness of the adaptability of the detector in identifying edges of a set of natural images and specialized subsets extracted from the same image set. The results obtained prove that expanding the search space of the optimization phase was not effective for the chosen image set. The study also analyzed the adaptability of the model through a series of experiments and validation techniques and found that, regardless of the validation, the model was able to adapt to the input and the transfer learning techniques applied to the model showed no significant improvements.