Discovering relevant, but possibly hidden, variables is a key step in constructing useful and predictive theories about the natural world. This brief note explains the connections between three approaches to this problem: the recently introduced information-bottleneck method, the computational mechanics approach to inferring optimal models, and Salmon's statistical relevance basis.
We present a novel autoencoder-based learning of joint geometric and probabilistic constellation shaping for coded-modulation systems. It can maximize either the mutual information (for symbol-metric decoding) or the generalized mutual information (for bit-metric decoding).
This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems. It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.
We construct a probabilistic coherence measure for information sets which determines a partial coherence ordering. This measure is applied in constructing a criterion for expanding our beliefs in the face of new information. A number of idealizations are being made which can be relaxed by an appeal to Bayesian Networks.
The concept of overfitting in model selection is explained and demonstrated with an example. After providing some background information on information theory and Kolmogorov complexity, we provide a short explanation of Minimum Description Length and error minimization. We conclude with a discussion of the typical features of overfitting in model selection.
This paper addresses the question of which models fit with information concerning the preferences of the decision maker over each attribute, and his preferences about aggregation of criteria (interacting criteria). We show that the conditions induced by these information plus some intuitive conditions lead to a unique possible aggregation operator: the Choquet integral.
In this technical report we propose an algorithm, called Lex2vec, that exploits lexical resources to inject information into word embeddings and name the embedding dimensions by means of distant supervision. We evaluate the optimal parameters to extract a number of informative labels that is readable and has a good coverage for the embedding dimensions.
In many cases commonsense knowledge consists of knowledge of what is usual. In this paper we develop a system for reasoning with usual information. This system is based upon the fact that these pieces of commonsense information involve both a probabilistic aspect and a granular aspect. We implement this system with the aid of possibility-probability granules.
Biomedical information is growing rapidly in the recent years and retrieving useful data through information extraction system is getting more attention. In the current research, we focus on different aspects of relation extraction techniques in biomedical domain and briefly describe the state-of-the-art for relation extraction between a variety of biological elements.
In Passive POMDPs actions do not affect the world state, but still incur costs. When the agent is bounded by information-processing constraints, it can only keep an approximation of the belief. We present a variational principle for the problem of maintaining the information which is most useful for minimizing the cost, and introduce an efficient and simple algorithm for finding an optimum.