Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Recent advances in 3D scene representations have enabled high-fidelity novel view synthesis, yet adapting to discrete scene changes and constructing interactive 3D environments remain open challenges in vision and robotics. Existing approaches focus solely on updating a single scene without supporting novel-state synthesis. Others rely on diffusion-based object-background decoupling that works on one state at a time and cannot fuse information across multiple observations. To address these limitations, we introduce RecurGS, a recurrent fusion framework that incrementally integrates discrete Gaussian scene states into a single evolving representation capable of interaction. RecurGS detects object-level changes across consecutive states, aligns their geometric motion using semantic correspondence and Lie-algebra based SE(3) refinement, and performs recurrent updates that preserve historical structures through replay supervision. A voxelized, visibility-aware fusion module selectively incorporates newly observed regions while keeping stable areas fixed, mitigating catastrophic forgetting and enabling efficient long-horizon updates. RecurGS supports object-level manipulation, synthesizes novel scene states without requiring additional scans, and maintains photorealistic fidelity across evolving environments. Extensive experiments across synthetic and real-world datasets demonstrate that our framework delivers high-quality reconstructions with substantially improved update efficiency, providing a scalable step toward continuously interactive Gaussian worlds.
The paper presents novel Universum-enhanced classifiers: the Universum Generalized Eigenvalue Proximal Support Vector Machine (U-GEPSVM) and the Improved U-GEPSVM (IU-GEPSVM) for EEG signal classification. Using the computational efficiency of generalized eigenvalue decomposition and the generalization benefits of Universum learning, the proposed models address critical challenges in EEG analysis: non-stationarity, low signal-to-noise ratio, and limited labeled data. U-GEPSVM extends the GEPSVM framework by incorporating Universum constraints through a ratio-based objective function, while IU-GEPSVM enhances stability through a weighted difference-based formulation that provides independent control over class separation and Universum alignment. The models are evaluated on the Bonn University EEG dataset across two binary classification tasks: (O vs S)-healthy (eyes closed) vs seizure, and (Z vs S)-healthy (eyes open) vs seizure. IU-GEPSVM achieves peak accuracies of 85% (O vs S) and 80% (Z vs S), with mean accuracies of 81.29% and 77.57% respectively, outperforming baseline methods.
Walking has always been a primary mode of transportation and is recognized as an essential activity for maintaining good health. Despite the need for safe walking conditions in urban environments, sidewalks are frequently obstructed by various obstacles that hinder free pedestrian movement. Any object obstructing a pedestrian's path can pose a safety hazard. The advancement of pervasive computing and egocentric vision techniques offers the potential to design systems that can automatically detect such obstacles in real time, thereby enhancing pedestrian safety. The development of effective and efficient identification algorithms relies on the availability of comprehensive and well-balanced datasets of egocentric data. In this work, we introduce the PEDESTRIAN dataset, comprising egocentric data for 29 different obstacles commonly found on urban sidewalks. A total of 340 videos were collected using mobile phone cameras, capturing a pedestrian's point of view. Additionally, we present the results of a series of experiments that involved training several state-of-the-art deep learning algorithms using the proposed dataset, which can be used as a benchmark for obstacle detection and recognition tasks. The dataset can be used for training pavement obstacle detectors to enhance the safety of pedestrians in urban areas.




Artificial intelligence (AI)-driven augmented reality (AR) systems are becoming increasingly integrated into daily life, and with this growth comes a greater need for explainability in real-time user interactions. Traditional explainable AI (XAI) methods, which often rely on feature-based or example-based explanations, struggle to deliver dynamic, context-specific, personalized, and human-centric insights for everyday AR users. These methods typically address separate explainability dimensions (e.g., when, what, how) with different explanation techniques, resulting in unrealistic and fragmented experiences for seamless AR interactions. To address this challenge, we propose PILAR, a novel framework that leverages a pre-trained large language model (LLM) to generate context-aware, personalized explanations, offering a more intuitive and trustworthy experience in real-time AI-powered AR systems. Unlike traditional methods, which rely on multiple techniques for different aspects of explanation, PILAR employs a unified LLM-based approach that dynamically adapts explanations to the user's needs, fostering greater trust and engagement. We implement the PILAR concept in a real-world AR application (e.g., personalized recipe recommendations), an open-source prototype that integrates real-time object detection, recipe recommendation, and LLM-based personalized explanations of the recommended recipes based on users' dietary preferences. We evaluate the effectiveness of PILAR through a user study with 16 participants performing AR-based recipe recommendation tasks, comparing an LLM-based explanation interface to a traditional template-based one. Results show that the LLM-based interface significantly enhances user performance and experience, with participants completing tasks 40% faster and reporting greater satisfaction, ease of use, and perceived transparency.



Recent advances in generative audio models have enabled high-fidelity environmental sound synthesis, raising serious concerns for audio security. The ESDD 2026 Challenge therefore addresses environmental sound deepfake detection under unseen generators (Track 1) and black-box low-resource detection (Track 2) conditions. We propose EnvSSLAM-FFN, which integrates a frozen SSLAM self-supervised encoder with a lightweight FFN back-end. To effectively capture spoofing artifacts under severe data imbalance, we fuse intermediate SSLAM representations from layers 4-9 and adopt a class-weighted training objective. Experimental results show that the proposed system consistently outperforms the official baselines on both tracks, achieving Test Equal Error Rates (EERs) of 1.20% and 1.05%, respectively.




Multi-agent collaborative perception (CP) is a promising paradigm for improving autonomous driving safety, particularly for vulnerable road users like pedestrians, via robust 3D perception. However, existing CP approaches often optimize for vehicle detection performance metrics, underperforming on smaller, safety-critical objects such as pedestrians, where detection failures can be catastrophic. Furthermore, previous CP methods rely on full feature exchange rather than communicating only salient features that help reduce false negatives. To this end, we present FocalComm, a novel collaborative perception framework that focuses on exchanging hard-instance-oriented features among connected collaborative agents. FocalComm consists of two key novel designs: (1) a learnable progressive hard instance mining (HIM) module to extract hard instance-oriented features per agent, and (2) a query-based feature-level (intermediate) fusion technique that dynamically weights these identified features during collaboration. We show that FocalComm outperforms state-of-the-art collaborative perception methods on two challenging real-world datasets (V2X-Real and DAIR-V2X) across both vehicle-centric and infrastructure-centric collaborative setups. FocalComm also shows a strong performance gain in pedestrian detection in V2X-Real.




Diffusion models excel at generating high-quality, diverse samples, yet they risk memorizing training data when overfit to the training objective. We analyze the distinctions between memorization and generalization in diffusion models through the lens of representation learning. By investigating a two-layer ReLU denoising autoencoder (DAE), we prove that (i) memorization corresponds to the model storing raw training samples in the learned weights for encoding and decoding, yielding localized "spiky" representations, whereas (ii) generalization arises when the model captures local data statistics, producing "balanced" representations. Furthermore, we validate these theoretical findings on real-world unconditional and text-to-image diffusion models, demonstrating that the same representation structures emerge in deep generative models with significant practical implications. Building on these insights, we propose a representation-based method for detecting memorization and a training-free editing technique that allows precise control via representation steering. Together, our results highlight that learning good representations is central to novel and meaningful generative modeling.
Object detection models deployed in real-world applications such as autonomous driving face serious threats from backdoor attacks. Despite their practical effectiveness,existing methods are inherently limited in both capability and robustness due to their dependence on single-trigger-single-object mappings and fragile pixel-level cues. We propose CIS-BA, a novel backdoor attack paradigm that redefines trigger design by shifting from static object features to continuous inter-object interaction patterns that describe how objects co-occur and interact in a scene. By modeling these patterns as a continuous interaction space, CIS-BA introduces space triggers that, for the first time, enable a multi-trigger-multi-object attack mechanism while achieving robustness through invariant geometric relations. To implement this paradigm, we design CIS-Frame, which constructs space triggers via interaction analysis, formalizes them as class-geometry constraints for sample poisoning, and embeds the backdoor during detector training. CIS-Frame supports both single-object attacks (object misclassification and disappearance) and multi-object simultaneous attacks, enabling complex and coordinated effects across diverse interaction states. Experiments on MS-COCO and real-world videos show that CIS-BA achieves over 97% attack success under complex environments and maintains over 95% effectiveness under dynamic multi-trigger conditions, while evading three state-of-the-art defenses. In summary, CIS-BA extends the landscape of backdoor attacks in interaction-intensive scenarios and provides new insights into the security of object detection systems.
We introduce Perception Encoder Audiovisual, PE-AV, a new family of encoders for audio and video understanding trained with scaled contrastive learning. Built on PE, PE-AV makes several key contributions to extend representations to audio, and natively support joint embeddings across audio-video, audio-text, and video-text modalities. PE-AV's unified cross-modal embeddings enable novel tasks such as speech retrieval, and set a new state of the art across standard audio and video benchmarks. We unlock this by building a strong audiovisual data engine that synthesizes high-quality captions for O(100M) audio-video pairs, enabling large-scale supervision consistent across modalities. Our audio data includes speech, music, and general sound effects-avoiding single-domain limitations common in prior work. We exploit ten pairwise contrastive objectives, showing that scaling cross-modality and caption-type pairs strengthens alignment and improves zero-shot performance. We further develop PE-A-Frame by fine-tuning PE-AV with frame-level contrastive objectives, enabling fine-grained audio-frame-to-text alignment for tasks such as sound event detection.
Extensive evaluation of perception systems is crucial for ensuring the safety of intelligent vehicles in complex driving scenarios. Conventional performance metrics such as precision, recall and the F1-score assess the overall detection accuracy, but they do not consider the safety-relevant aspects of perception. Consequently, perception systems that achieve high scores in these metrics may still cause misdetections that could lead to severe accidents. Therefore, it is important to evaluate not only the overall performance of perception systems, but also their safety. We therefore introduce a novel safety metric for jointly evaluating the most critical perception tasks, object and lane detection. Our proposed framework integrates a new, lightweight object safety metric that quantifies the potential risk associated with object detection errors, as well as an lane safety metric including the interdependence between both tasks that can occur in safety evaluation. The resulting combined safety score provides a unified, interpretable measure of perception safety performance. Using the DeepAccident dataset, we demonstrate that our approach identifies safety critical perception errors that conventional performance metrics fail to capture. Our findings emphasize the importance of safety-centric evaluation methods for perception systems in autonomous driving.