Abstract:We propose an online learning framework for forecasting nonlinear spatio-temporal signals (fields). The method integrates (i) dimensionality reduction, here, a simple proper orthogonal decomposition (POD) projection; (ii) a generalized autoregressive model to forecast reduced dynamics, here, a reservoir computer; (iii) online adaptation to update the reservoir computer (the model), here, ensemble sequential data assimilation.We demonstrate the framework on a wake past a cylinder governed by the Navier-Stokes equations, exploring the assimilation of full flow fields (projected onto POD modes) and sparse sensors. Three scenarios are examined: a na\"ive physical state estimation; a two-fold estimation of physical and reservoir states; and a three-fold estimation that also adjusts the model parameters. The two-fold strategy significantly improves ensemble convergence and reduces reconstruction error compared to the na\"ive approach. The three-fold approach enables robust online training of partially-trained reservoir computers, overcoming limitations of a priori training. By unifying data-driven reduced order modelling with Bayesian data assimilation, this work opens new opportunities for scalable online model learning for nonlinear time series forecasting.
Abstract:The goal of many applications in energy and transport sectors is to control turbulent flows. However, because of chaotic dynamics and high dimensionality, the control of turbulent flows is exceedingly difficult. Model-free reinforcement learning (RL) methods can discover optimal control policies by interacting with the environment, but they require full state information, which is often unavailable in experimental settings. We propose a data-assimilated model-based RL (DA-MBRL) framework for systems with partial observability and noisy measurements. Our framework employs a control-aware Echo State Network for data-driven prediction of the dynamics, and integrates data assimilation with an Ensemble Kalman Filter for real-time state estimation. An off-policy actor-critic algorithm is employed to learn optimal control strategies from state estimates. The framework is tested on the Kuramoto-Sivashinsky equation, demonstrating its effectiveness in stabilizing a spatiotemporally chaotic flow from noisy and partial measurements.
Abstract:Multi-model fitting (MMF) presents a significant challenge in Computer Vision, particularly due to its combinatorial nature. While recent advancements in quantum computing offer promise for addressing NP-hard problems, existing quantum-based approaches for model fitting are either limited to a single model or consider multi-model scenarios within outlier-free datasets. This paper introduces a novel approach, the robust quantum multi-model fitting (R-QuMF) algorithm, designed to handle outliers effectively. Our method leverages the intrinsic capabilities of quantum hardware to tackle combinatorial challenges inherent in MMF tasks, and it does not require prior knowledge of the exact number of models, thereby enhancing its practical applicability. By formulating the problem as a maximum set coverage task for adiabatic quantum computers (AQC), R-QuMF outperforms existing quantum techniques, demonstrating superior performance across various synthetic and real-world 3D datasets. Our findings underscore the potential of quantum computing in addressing the complexities of MMF, especially in real-world scenarios with noisy and outlier-prone data.
Abstract:In industrial settings, weakly supervised (WS) methods are usually preferred over their fully supervised (FS) counterparts as they do not require costly manual annotations. Unfortunately, the segmentation masks obtained in the WS regime are typically poor in terms of accuracy. In this work, we present a WS method capable of producing accurate masks for semantic segmentation in the case of video streams. More specifically, we build saliency maps that exploit the temporal coherence between consecutive frames in a video, promoting consistency when objects appear in different frames. We apply our method in a waste-sorting scenario, where we perform weakly supervised video segmentation (WSVS) by training an auxiliary classifier that distinguishes between videos recorded before and after a human operator, who manually removes specific wastes from a conveyor belt. The saliency maps of this classifier identify materials to be removed, and we modify the classifier training to minimize differences between the saliency map of a central frame and those in adjacent frames, after having compensated object displacement. Experiments on a real-world dataset demonstrate the benefits of integrating temporal coherence directly during the training phase of the classifier. Code and dataset are available upon request.
Abstract:In this paper, we introduce the proper latent decomposition (PLD) as a generalization of the proper orthogonal decomposition (POD) on manifolds. PLD is a nonlinear reduced-order modeling technique for compressing high-dimensional data into nonlinear coordinates. First, we compute a reduced set of intrinsic coordinates (latent space) to accurately describe a flow with fewer degrees of freedom than the numerical discretization. The latent space, which is geometrically a manifold, is inferred by an autoencoder. Second, we leverage tools from differential geometry to develop numerical methods for operating directly on the latent space; namely, a metric-constrained Eikonal solver for distance computations. With this proposed numerical framework, we propose an algorithm to perform PLD on the manifold. Third, we demonstrate results for a laminar flow case and the turbulent Kolmogorov flow. For the laminar flow case, we are able to identify a semi-analytical expression for the solution of Navier-Stokes; in the Kolmogorov flow case, we are able to identify a dominant mode that exhibits physical structures, which are compared with POD. This work opens opportunities for analyzing autoencoders and latent spaces, nonlinear reduced-order modeling and scientific insights into the structure of high-dimensional data.
Abstract:The data-driven learning of solutions of partial differential equations can be based on a divide-and-conquer strategy. First, the high dimensional data is compressed to a latent space with an autoencoder; and, second, the temporal dynamics are inferred on the latent space with a form of recurrent neural network. In chaotic systems and turbulence, convolutional autoencoders and echo state networks (CAE-ESN) successfully forecast the dynamics, but little is known about whether the stability properties can also be inferred. We show that the CAE-ESN model infers the invariant stability properties and the geometry of the tangent space in the low-dimensional manifold (i.e. the latent space) through Lyapunov exponents and covariant Lyapunov vectors. This work opens up new opportunities for inferring the stability of high-dimensional chaotic systems in latent spaces.
Abstract:Partial differential equations, and their chaotic solutions, are pervasive in the modelling of complex systems in engineering, science, and beyond. Data-driven methods can find solutions to partial differential equations with a divide-and-conquer strategy: The solution is sought in a latent space, on which the temporal dynamics are inferred (``latent-space'' approach). This is achieved by, first, compressing the data with an autoencoder, and, second, inferring the temporal dynamics with recurrent neural networks. The overarching goal of this paper is to show that a latent-space approach can not only infer the solution of a chaotic partial differential equation, but it can also predict the stability properties of the physical system. First, we employ the convolutional autoencoder echo state network (CAE-ESN) on the chaotic Kuramoto-Sivashinsky equation for various chaotic regimes. We show that the CAE-ESN (i) finds a low-dimensional latent-space representation of the observations and (ii) accurately infers the Lyapunov exponents and covariant Lyapunov vectors (CLVs) in this low-dimensional manifold for different attractors. Second, we extend the CAE-ESN to a turbulent flow, comparing the Lyapunov spectrum to estimates obtained from Jacobian-free methods. A latent-space approach based on the CAE-ESN effectively produces a latent space that preserves the key properties of the chaotic system, such as Lyapunov exponents and CLVs, thus retaining the geometric structure of the attractor. The latent-space approach based on the CAE-ESN is a reduced-order model that accurately predicts the dynamics of the chaotic system, or, alternatively, it can be used to infer stability properties of chaotic systems from data.
Abstract:In the current Noisy Intermediate Scale Quantum (NISQ) era, the presence of noise deteriorates the performance of quantum computing algorithms. Quantum Reservoir Computing (QRC) is a type of Quantum Machine Learning algorithm, which, however, can benefit from different types of tuned noise. In this paper, we analyse the effect that finite-sampling noise has on the chaotic time-series prediction capabilities of QRC and Recurrence-free Quantum Reservoir Computing (RF-QRC). First, we show that, even without a recurrent loop, RF-QRC contains temporal information about previous reservoir states using leaky integrated neurons. This makes RF-QRC different from Quantum Extreme Learning Machines (QELM). Second, we show that finite sampling noise degrades the prediction capabilities of both QRC and RF-QRC while affecting QRC more due to the propagation of noise. Third, we optimize the training of the finite-sampled quantum reservoir computing framework using two methods: (a) Singular Value Decomposition (SVD) applied to the data matrix containing noisy reservoir activation states; and (b) data-filtering techniques to remove the high-frequencies from the noisy reservoir activation states. We show that denoising reservoir activation states improve the signal-to-noise ratios with smaller training loss. Finally, we demonstrate that the training and denoising of the noisy reservoir activation signals in RF-QRC are highly parallelizable on multiple Quantum Processing Units (QPUs) as compared to the QRC architecture with recurrent connections. The analyses are numerically showcased on prototypical chaotic dynamical systems with relevance to turbulence. This work opens opportunities for using quantum reservoir computing with finite samples for time-series forecasting on near-term quantum hardware.
Abstract:Data from fluid flow measurements are typically sparse, noisy, and heterogeneous, often from mixed pressure and velocity measurements, resulting in incomplete datasets. In this paper, we develop a physics-constrained convolutional neural network, which is a deterministic tool, to reconstruct the full flow field from incomplete data. We explore three loss functions, both from machine learning literature and newly proposed: (i) the softly-constrained loss, which allows the prediction to take any value; (ii) the snapshot-enforced loss, which constrains the prediction at the sensor locations; and (iii) the mean-enforced loss, which constrains the mean of the prediction at the sensor locations. The proposed methods do not require the full flow field during training, making it suitable for reconstruction from incomplete data. We apply the method to reconstruct a laminar wake of a bluff body and a turbulent Kolmogorov flow. First, we assume that measurements are not noisy and reconstruct both the laminar wake and the Kolmogorov flow from sensors located at fewer than 1% of all grid points. The snapshot-enforced loss reduces the reconstruction error of the Kolmogorov flow by approximately 25% compared to the softly-constrained loss. Second, we assume that measurements are noisy and propose the mean-enforced loss to reconstruct the laminar wake and the Kolmogorov flow at three different signal-to-noise ratios. We find that, across the ratios tested, the loss functions with harder constraints are more robust to both the random initialization of the networks and the noise levels in the measurements. At high noise levels, the mean-enforced loss can recover the instantaneous snapshots accurately, making it the suitable choice when reconstructing flows from data corrupted with an unknown amount of noise. The proposed method opens opportunities for physical flow reconstruction from sparse, noisy data.
Abstract:Deep Learning (DL) models have been successfully applied to many applications including biomedical cell segmentation and classification in histological images. These models require large amounts of annotated data which might not always be available, especially in the medical field where annotations are scarce and expensive. To overcome this limitation, we propose a novel pipeline for generating synthetic datasets for cell segmentation. Given only a handful of annotated images, our method generates a large dataset of images which can be used to effectively train DL instance segmentation models. Our solution is designed to generate cells of realistic shapes and placement by allowing experts to incorporate domain knowledge during the generation of the dataset.