Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.




Advancement of machine learning techniques, combined with the availability of large-scale datasets, has significantly improved the accuracy and efficiency of facial recognition. Modern facial recognition systems are trained using large face datasets collected from diverse individuals or public repositories. However, for training, these datasets are often replicated and stored in multiple workstations, resulting in data replication, which complicates database management and oversight. Currently, once a user submits their face for dataset preparation, they lose control over how their data is used, raising significant privacy and ethical concerns. This paper introduces VOIDFace, a novel framework for facial recognition systems that addresses two major issues. First, it eliminates the need of data replication and improves data control to securely store training face data by using visual secret sharing. Second, it proposes a patch-based multi-training network that uses this novel training data storage mechanism to develop a robust, privacy-preserving facial recognition system. By integrating these advancements, VOIDFace aims to improve the privacy, security, and efficiency of facial recognition training, while ensuring greater control over sensitive personal face data. VOIDFace also enables users to exercise their Right-To-Be-Forgotten property to control their personal data. Experimental evaluations on the VGGFace2 dataset show that VOIDFace provides Right-To-Be-Forgotten, improved data control, security, and privacy while maintaining competitive facial recognition performance. Code is available at: https://github.com/ajnasmuhammed89/VOIDFace




This paper introduces a holistic perception system for internal and external monitoring of autonomous vehicles, with the aim of demonstrating a novel AI-leveraged self-adaptive framework of advanced vehicle technologies and solutions that optimize perception and experience on-board. Internal monitoring system relies on a multi-camera setup designed for predicting and identifying driver and occupant behavior through facial recognition, exploiting in addition a large language model as virtual assistant. Moreover, the in-cabin monitoring system includes AI-empowered smart sensors that measure air-quality and perform thermal comfort analysis for efficient on and off-boarding. On the other hand, external monitoring system perceives the surrounding environment of vehicle, through a LiDAR-based cost-efficient semantic segmentation approach, that performs highly accurate and efficient super-resolution on low-quality raw 3D point clouds. The holistic perception framework is developed in the context of EU's Horizon Europe programm AutoTRUST, and has been integrated and deployed on a real electric vehicle provided by ALKE. Experimental validation and evaluation at the integration site of Joint Research Centre at Ispra, Italy, highlights increased performance and efficiency of the modular blocks of the proposed perception architecture.




Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence, insufficient robustness, and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Our experiments demonstrate the effectiveness of LD-ViCE across three diverse video datasets, including EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition). LD-ViCE outperforms a recent state-of-the-art method, achieving an increase in R2 score of up to 68% while reducing inference time by half. Qualitative analysis confirms that LD-ViCE generates semantically meaningful and temporally coherent explanations, offering valuable insights into the target model behavior. LD-ViCE represents a valuable step toward the trustworthy deployment of AI in safety-critical domains.
In the rapidly evolving landscape of digital security, biometric authentication systems, particularly facial recognition, have emerged as integral components of various security protocols. However, the reliability of these systems is compromised by sophisticated spoofing attacks, where imposters gain unauthorized access by falsifying biometric traits. Current literature reveals a concerning gap: existing liveness detection methodologies - designed to counteract these breaches - fall short against advanced spoofing tactics employing deepfakes and other artificial intelligence-driven manipulations. This study introduces a robust solution through novel deep learning models addressing the deficiencies in contemporary anti-spoofing techniques. By innovatively integrating texture analysis and reflective properties associated with genuine human traits, our models distinguish authentic presence from replicas with remarkable precision. Extensive evaluations were conducted across five diverse datasets, encompassing a wide range of attack vectors and environmental conditions. Results demonstrate substantial advancement over existing systems, with our best model (AttackNet V2.2) achieving 99.9% average accuracy when trained on combined data. Moreover, our research unveils critical insights into the behavioral patterns of impostor attacks, contributing to a more nuanced understanding of their evolving nature. The implications are profound: our models do not merely fortify the authentication processes but also instill confidence in biometric systems across various sectors reliant on secure access.
Facial filters are now commonplace for social media users around the world. Previous work has demonstrated that facial filters can negatively impact automated face recognition performance. However, these studies focus on small numbers of hand-picked filters in particular styles. In order to more effectively incorporate the wide ranges of filters present on various social media applications, we introduce a framework that allows for larger-scale study of the impact of facial filters on automated recognition. This framework includes a controlled dataset of face images, a principled filter selection process that selects a representative range of filters for experimentation, and a set of experiments to evaluate the filters' impact on recognition. We demonstrate our framework with a case study of filters from the American applications Instagram and Snapchat and the Chinese applications Meitu and Pitu to uncover cross-cultural differences. Finally, we show how the filtering effect in a face embedding space can easily be detected and restored to improve face recognition performance.
Non-manual facial features play a crucial role in sign language communication, yet their importance in automatic sign language recognition (ASLR) remains underexplored. While prior studies have shown that incorporating facial features can improve recognition, related work often relies on hand-crafted feature extraction and fails to go beyond the comparison of manual features versus the combination of manual and facial features. In this work, we systematically investigate the contribution of distinct facial regionseyes, mouth, and full faceusing two different deep learning models (a CNN-based model and a transformer-based model) trained on an SLR dataset of isolated signs with randomly selected classes. Through quantitative performance and qualitative saliency map evaluation, we reveal that the mouth is the most important non-manual facial feature, significantly improving accuracy. Our findings highlight the necessity of incorporating facial features in ASLR.
Isolated Sign Language Recognition (ISLR) is challenged by gestures that are morphologically similar yet semantically distinct, a problem rooted in the complex interplay between hand shape and motion trajectory. Existing methods, often relying on a single reference frame, struggle to resolve this geometric ambiguity. This paper introduces Dual-SignLanguageNet (DSLNet), a dual-reference, dual-stream architecture that decouples and models gesture morphology and trajectory in separate, complementary coordinate systems. Our approach utilizes a wrist-centric frame for view-invariant shape analysis and a facial-centric frame for context-aware trajectory modeling. These streams are processed by specialized networks-a topology-aware graph convolution for shape and a Finsler geometry-based encoder for trajectory-and are integrated via a geometry-driven optimal transport fusion mechanism. DSLNet sets a new state-of-the-art, achieving 93.70%, 89.97% and 99.79% accuracy on the challenging WLASL-100, WLASL-300 and LSA64 datasets, respectively, with significantly fewer parameters than competing models.
The increasing demand for fast and cost effective last mile delivery solutions has catalyzed significant advancements in drone based logistics. This research describes the development of an AI integrated drone delivery system, focusing on route optimization, object detection, secure package handling, and real time tracking. The proposed system leverages YOLOv4 Tiny for object detection, the NEO 6M GPS module for navigation, and the A7670 SIM module for real time communication. A comparative analysis of lightweight AI models and hardware components is conducted to determine the optimal configuration for real time UAV based delivery. Key challenges including battery efficiency, regulatory compliance, and security considerations are addressed through the integration of machine learning techniques, IoT devices, and encryption protocols. Preliminary studies demonstrate improvement in delivery time compared to conventional ground based logistics, along with high accuracy recipient authentication through facial recognition. The study also discusses ethical implications and societal acceptance of drone deliveries, ensuring compliance with FAA, EASA and DGCA regulatory standards. Note: This paper presents the architecture, design, and preliminary simulation results of the proposed system. Experimental results, simulation benchmarks, and deployment statistics are currently being acquired. A comprehensive analysis will be included in the extended version of this work.
Dynamic Facial Expression Recognition(DFER) is a rapidly evolving field of research that focuses on the recognition of time-series facial expressions. While previous research on DFER has concentrated on feature learning from a deep learning perspective, we put forward an AU-enhanced Dynamic Facial Expression Recognition architecture, namely AU-DFER, that incorporates AU-expression knowledge to enhance the effectiveness of deep learning modeling. In particular, the contribution of the Action Units(AUs) to different expressions is quantified, and a weight matrix is designed to incorporate a priori knowledge. Subsequently, the knowledge is integrated with the learning outcomes of a conventional deep learning network through the introduction of AU loss. The design is incorporated into the existing optimal model for dynamic expression recognition for the purpose of validation. Experiments are conducted on three recent mainstream open-source approaches to DFER on the principal datasets in this field. The results demonstrate that the proposed architecture outperforms the state-of-the-art(SOTA) methods without the need for additional arithmetic and generally produces improved results. Furthermore, we investigate the potential of AU loss function redesign to address data label imbalance issues in established dynamic expression datasets. To the best of our knowledge, this is the first attempt to integrate quantified AU-expression knowledge into various DFER models. We also devise strategies to tackle label imbalance, or minor class problems. Our findings suggest that employing a diverse strategy of loss function design can enhance the effectiveness of DFER. This underscores the criticality of addressing data imbalance challenges in mainstream datasets within this domain. The source code is available at https://github.com/Cross-Innovation-Lab/AU-DFER.
Dynamic Facial Expression Recognition (DFER) aims to identify human emotions from temporally evolving facial movements and plays a critical role in affective computing. While recent vision-language approaches have introduced semantic textual descriptions to guide expression recognition, existing methods still face two key limitations: they often underutilize the subtle emotional cues embedded in generated text, and they have yet to incorporate sufficiently effective mechanisms for filtering out facial dynamics that are irrelevant to emotional expression. To address these gaps, We propose GRACE, Granular Representation Alignment for Cross-modal Emotion recognition that integrates dynamic motion modeling, semantic text refinement, and token-level cross-modal alignment to facilitate the precise localization of emotionally salient spatiotemporal features. Our method constructs emotion-aware textual descriptions via a Coarse-to-fine Affective Text Enhancement (CATE) module and highlights expression-relevant facial motion through a motion-difference weighting mechanism. These refined semantic and visual signals are aligned at the token level using entropy-regularized optimal transport. Experiments on three benchmark datasets demonstrate that our method significantly improves recognition performance, particularly in challenging settings with ambiguous or imbalanced emotion classes, establishing new state-of-the-art (SOTA) results in terms of both UAR and WAR.