Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Anomaly detection is important for keeping cloud systems reliable and stable. Deep learning has improved time-series anomaly detection, but most models are evaluated on one dataset at a time. This raises questions about whether these models can handle different types of telemetry, especially in large-scale and high-dimensional environments. In this study, we evaluate four deep learning models, GRU, TCN, Transformer, and TSMixer. We also include Isolation Forest as a classical baseline. The models are tested across four telemetry datasets: the Numenta Anomaly Benchmark, Microsoft Cloud Monitoring dataset, Exathlon dataset, and IBM Console dataset. These datasets differ in structure, dimensionality, and labelling strategy. They include univariate time series, synthetic multivariate workloads, and real-world production telemetry with over 100,000 features. We use a unified training and evaluation pipeline across all datasets. The evaluation includes NAB-style metrics to capture early detection behaviour for datasets where anomalies persist over contiguous time intervals. This enables window-based scoring in settings where anomalies occur over contiguous time intervals, even when labels are recorded at the point level. The unified setup enables consistent analysis of model behaviour under shared scoring and calibration assumptions. Our results demonstrate that anomaly detection performance in cloud systems is governed not only by model architecture, but critically by calibration stability and feature-space geometry. By releasing our preprocessing pipelines, benchmark configuration, and evaluation artifacts, we aim to support reproducible and deployment-aware evaluation of anomaly detection systems for cloud environments.
Time series data are integral to critical applications across domains such as finance, healthcare, transportation, and environmental science. While recent work has begun to explore multi-task time series question answering (QA), current benchmarks remain limited to forecasting and anomaly detection tasks. We introduce TSAQA, a novel unified benchmark designed to broaden task coverage and evaluate diverse temporal analysis capabilities. TSAQA integrates six diverse tasks under a single framework ranging from conventional analysis, including anomaly detection and classification, to advanced analysis, such as characterization, comparison, data transformation, and temporal relationship analysis. Spanning 210k samples across 13 domains, the dataset employs diverse formats, including true-or-false (TF), multiple-choice (MC), and a novel puzzling (PZ), to comprehensively assess time series analysis. Zero-shot evaluation demonstrates that these tasks are challenging for current Large Language Models (LLMs): the best-performing commercial LLM, Gemini-2.5-Flash, achieves an average score of only 65.08. Although instruction tuning boosts open-source performance: the best-performing open-source model, LLaMA-3.1-8B, shows significant room for improvement, highlighting the complexity of temporal analysis for LLMs.
Long-term satellite image time series (SITS) analysis in heterogeneous landscapes faces significant challenges, particularly in Mediterranean regions where complex spatial patterns, seasonal variations, and multi-decade environmental changes interact across different scales. This paper presents the Spatio-Temporal Transformer for Long Term Forecasting (STT-LTF ), an extended framework that advances beyond purely temporal analysis to integrate spatial context modeling with temporal sequence prediction. STT-LTF processes multi-scale spatial patches alongside temporal sequences (up to 20 years) through a unified transformer architecture, capturing both local neighborhood relationships and regional climate influences. The framework employs comprehensive self-supervised learning with spatial masking, temporal masking, and horizon sampling strategies, enabling robust model training from 40 years of unlabeled Landsat imagery. Unlike autoregressive approaches, STT-LTF directly predicts arbitrary future time points without error accumulation, incorporating spatial patch embeddings, cyclical temporal encoding, and geographic coordinates to learn complex dependencies across heterogeneous Mediterranean ecosystems. Experimental evaluation on Landsat data (1984-2024) demonstrates that STT-LTF achieves a Mean Absolute Error (MAE) of 0.0328 and R^2 of 0.8412 for next-year predictions, outperforming traditional statistical methods, CNN-based approaches, LSTM networks, and standard transformers. The framework's ability to handle irregular temporal sampling and variable prediction horizons makes it particularly suitable for analysis of heterogeneous landscapes experiencing rapid ecological transitions.
Passive dynamic walkers are widely adopted as a mathematical model to represent biped walking. The stable locomotion of these models is limited to tilted surfaces, requiring gravitational energy. Various techniques, such as actuation through the ankle and hip joints, have been proposed to extend the applicability of these models to level ground and rough terrain with improved locomotion efficiency. However, most of these techniques rely on impulsive energy injection schemes and torsional springs, which are quite challenging to implement in a physical platform. Here, a new model is proposed, named triggering controlled ankle actuated compass gait (TC-AACG), which allows non-instantaneous compliant ankle pushoff. The proposed technique can be implemented in physical platforms via series elastic actuators (SEAs). Our systematic examination shows that the proposed approach extends the locomotion capabilities of a biped model compared to impulsive ankle pushoff approach. We provide extensive simulation analysis investigating the locomotion speed, mechanical cost of transport, and basin of attraction of the proposed model.
We propose Laplacian In-context Spectral Analysis (LISA), a method for inference-time adaptation of Laplacian-based time-series models using only an observed prefix. LISA combines delay-coordinate embeddings and Laplacian spectral learning to produce diffusion-coordinate state representations, together with a frozen nonlinear decoder for one-step prediction. We introduce lightweight latent-space residual adapters based on either Gaussian-process regression or an attention-like Markov operator over context windows. Across forecasting and autoregressive rollout experiments, LISA improves over the frozen baseline and is often most beneficial under changing dynamics. This work links in-context adaptation to nonparametric spectral methods for dynamical systems.
It is unclear whether strong forecasting performance reflects genuine temporal understanding or the ability to reason under contextual and event-driven conditions. We introduce TemporalBench, a multi-domain benchmark designed to evaluate temporal reasoning behavior under progressively richer informational settings. TemporalBench adopts a four-tier task taxonomy that examines historical structure interpretation, context-free forecasting, contextual temporal reasoning, and event-conditioned prediction across four real-world domains: retail, healthcare, energy, and physical systems. By controlling access to future targets and contextual information, the benchmark enables a diagnostic analysis of whether models can correctly interpret temporal patterns, align them with external context, and adapt predictions when conditions change. Extensive baseline experiments show that strong numerical forecasting accuracy does not reliably translate into robust contextual or event-aware temporal reasoning; instead, existing agent frameworks exhibit fragmented strengths and systematic failure modes that remain largely hidden under forecasting-only benchmarks. The TemporalBench dataset is publicly available at https://huggingface.co/datasets/Melady/TemporalBench, and we additionally provide a public leaderboard at https://huggingface.co/spaces/Melady/TemporalBench_Leaderboard.
Foundation models have transformed language, vision, and time series data analysis, yet progress on dynamic predictions for physical systems remains limited. Given the complexity of physical constraints, two challenges stand out. $(i)$ Physics-computation scalability: physics-informed learning can enforce physical regularization, but its computation (e.g., ODE integration) does not scale to extensive systems. $(ii)$ Knowledge-sharing efficiency: the attention mechanism is primarily computed within each system, which limits the extraction of shared ODE structures across systems. We show that enforcing ODE consistency does not require expensive nonlinear integration: a token-wise locally linear ODE representation preserves physical fidelity while scaling to foundation-model regimes. Thus, we propose novel token representations that respect locally linear ODE evolution. Such linearity substantially accelerates integration while accurately approximating the local data manifold. Second, we introduce a simple yet effective inter-system attention that augments attention with a common structure hub (CSH) that stores shared tokens and aggregates knowledge across systems. The resulting model, termed LASS-ODE (\underline{LA}rge-\underline{S}cale \underline{S}mall \underline{ODE}), is pretrained on our $40$GB ODE trajectory collections to enable strong in-domain performance, zero-shot generalization across diverse ODE systems, and additional improvements through fine-tuning.
Transformer-based foundation models have achieved remarkable progress in tasks such as time-series forecasting and image segmentation. However, they frequently suffer from error accumulation in multivariate long-sequence prediction and exhibit vulnerability to out-of-distribution samples in image-related tasks. Furthermore, these challenges become particularly pronounced in large-scale Web data analysis tasks, which typically involve complex temporal patterns and multimodal features. This complexity substantially increases optimization difficulty, rendering models prone to stagnation at saddle points within high-dimensional parameter spaces. To address these issues, we propose a lightweight Transformer architecture in conjunction with a novel Escape-Explore Optimizer (EEO). The optimizer enhances both exploration and generalization while effectively avoiding sharp minima and saddle-point traps. Experimental results show that, in representative Web data scenarios, our method achieves performance on par with state-of-the-art models across 11 time-series benchmark datasets and the Synapse medical image segmentation task. Moreover, it demonstrates superior generalization and stability, thereby validating its potential as a versatile cross-task foundation model for Web-scale data mining and analysis.
Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
Time series forecasting plays a critical role in decision-making across many real-world applications. Unlike data in vision and language domains, time series data is inherently tied to the evolution of underlying processes and can only accumulate as real-world time progresses, limiting the effectiveness of scale-driven pretraining alone. This time-bound constraint poses a challenge for enabling large language models (LLMs) to acquire forecasting capability, as existing approaches primarily rely on representation-level alignment or inference-time temporal modules rather than explicitly teaching forecasting behavior to the LLM. We propose T-LLM, a temporal distillation framework that equips general-purpose LLMs with time series forecasting capability by transferring predictive behavior from a lightweight temporal teacher during training. The teacher combines trend modeling and frequency-domain analysis to provide structured temporal supervision, and is removed entirely at inference, leaving the LLM as the sole forecasting model. Experiments on benchmark datasets and infectious disease forecasting tasks demonstrate that T-LLM consistently outperforms existing LLM-based forecasting methods under full-shot, few-shot, and zero-shot settings, while enabling a simple and efficient deployment pipeline.