Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Wearable foundation models have the potential to transform digital health by learning transferable representations from large-scale biosignals collected in everyday settings. While recent progress has been made in large-scale pretraining, most approaches overlook the spectral structure of photoplethysmography (PPG) signals, wherein physiological rhythms unfold across multiple frequency bands. Motivated by the insight that many downstream health-related tasks depend on multi-resolution features spanning fine-grained waveform morphology to global rhythmic dynamics, we introduce Masked Multiscale Reconstruction (MMR) for PPG representation learning - a self-supervised pretraining framework that explicitly learns from hierarchical time-frequency scales of PPG data. The pretraining task is designed to reconstruct randomly masked out coefficients obtained from a wavelet-based multiresolution decomposition of PPG signals, forcing the transformer encoder to integrate information across temporal and spectral scales. We pretrain our model with MMR using ~17 million unlabeled 10-second PPG segments from ~32,000 smartwatch users. On 17 of 19 diverse health-related tasks, MMR trained on large-scale wearable PPG data improves over or matches state-of-the-art open-source PPG foundation models, time-series foundation models, and other self-supervised baselines. Extensive analysis of our learned embeddings and systematic ablations underscores the value of wavelet-based representations, showing that they capture robust and physiologically-grounded features. Together, these results highlight the potential of MMR as a step toward generalizable PPG foundation models.
The paper develops a Transformer architecture for estimating dynamic factors from multivariate time series data under flexible identification assumptions. Performance on small datasets is improved substantially by using a conventional factor model as prior information via a regularization term in the training objective. The results are interpreted with Attention matrices that quantify the relative importance of variables and their lags for the factor estimate. Time variation in Attention patterns can help detect regime switches and evaluate narratives. Monte Carlo experiments suggest that the Transformer is more accurate than the linear factor model, when the data deviate from linear-Gaussian assumptions. An empirical application uses the Transformer to construct a coincident index of U.S. real economic activity.
In this paper, we propose a distributed framework for reducing the dimensionality of high-dimensional, large-scale, heterogeneous matrix-variate time series data using a factor model. The data are first partitioned column-wise (or row-wise) and allocated to node servers, where each node estimates the row (or column) loading matrix via two-dimensional tensor PCA. These local estimates are then transmitted to a central server and aggregated, followed by a final PCA step to obtain the global row (or column) loading matrix estimator. Given the estimated loading matrices, the corresponding factor matrices are subsequently computed. Unlike existing distributed approaches, our framework preserves the latent matrix structure, thereby improving computational efficiency and enhancing information utilization. We also discuss row- and column-wise clustering procedures for settings in which the group memberships are unknown. Furthermore, we extend the analysis to unit-root nonstationary matrix-variate time series. Asymptotic properties of the proposed method are derived for the diverging dimension of the data in each computing unit and the sample size $T$. Simulation results assess the computational efficiency and estimation accuracy of the proposed framework, and real data applications further validate its predictive performance.
Wearable devices enable continuous, population-scale monitoring of physiological signals, such as photoplethysmography (PPG), creating new opportunities for data-driven clinical assessment. Time-series extrinsic regression (TSER) models increasingly leverage PPG signals to estimate clinically relevant outcomes, including heart rate, respiratory rate, and oxygen saturation. For clinical reasoning and trust, however, single point estimates alone are insufficient: clinicians must also understand whether predictions are stable under physiologically plausible variations and to what extent realistic, attainable changes in physiological signals would meaningfully alter a model's prediction. Counterfactual explanations (CFE) address these "what-if" questions, yet existing time series CFE generation methods are largely restricted to classification, overlook waveform morphology, and often produce physiologically implausible signals, limiting their applicability to continuous biomedical time series. To address these limitations, we introduce EvoMorph, a multi-objective evolutionary framework for generating physiologically plausible and diverse CFE for TSER applications. EvoMorph optimizes morphology-aware objectives defined on interpretable signal descriptors and applies transformations to preserve the waveform structure. We evaluated EvoMorph on three PPG datasets (heart rate, respiratory rate, and oxygen saturation) against a nearest-unlike-neighbor baseline. In addition, in a case study, we evaluated EvoMorph as a tool for uncertainty quantification by relating counterfactual sensitivity to bootstrap-ensemble uncertainty and data-density measures. Overall, EvoMorph enables the generation of physiologically-aware counterfactuals for continuous biomedical signals and supports uncertainty-aware interpretability, advancing trustworthy model analysis for clinical time-series applications.
This data paper describes and publicly releases this dataset (v1.0.0), published on Zenodo under DOI 10.5281/zenodo.18189192. Motivated by the need to increase the temporal granularity of originally monthly data to enable more effective training of AI models for epidemiological forecasting, the dataset harmonizes municipal-level dengue hospitalization time series across Brazil and disaggregates them to weekly resolution (epidemiological weeks) through an interpolation protocol with a correction step that preserves monthly totals. The statistical and temporal validity of this disaggregation was assessed using a high-resolution reference dataset from the state of Sao Paulo (2024), which simultaneously provides monthly and epidemiological-week counts, enabling a direct comparison of three strategies: linear interpolation, jittering, and cubic spline. Results indicated that cubic spline interpolation achieved the highest adherence to the reference data, and this strategy was therefore adopted to generate weekly series for the 1999 to 2021 period. In addition to hospitalization time series, the dataset includes a comprehensive set of explanatory variables commonly used in epidemiological and environmental modeling, such as demographic density, CH4, CO2, and NO2 emissions, poverty and urbanization indices, maximum temperature, mean monthly precipitation, minimum relative humidity, and municipal latitude and longitude, following the same temporal disaggregation scheme to ensure multivariate compatibility. The paper documents the datasets provenance, structure, formats, licenses, limitations, and quality metrics (MAE, RMSE, R2, KL, JSD, DTW, and the KS test), and provides usage recommendations for multivariate time-series analysis, environmental health studies, and the development of machine learning and deep learning models for outbreak forecasting.
Glacial Lake Outburst Floods (GLOFs) pose a serious threat in high mountain regions. They are hazardous to communities, infrastructure, and ecosystems further downstream. The classical methods of GLOF detection and prediction have so far mainly relied on hydrological modeling, threshold-based lake monitoring, and manual satellite image analysis. These approaches suffer from several drawbacks: slow updates, reliance on manual labor, and losses in accuracy when clouds interfere and/or lack on-site data. To tackle these challenges, we present IceWatch: a novel deep learning framework for GLOF prediction that incorporates both spatial and temporal perspectives. The vision component, RiskFlow, of IceWatch deals with Sentinel-2 multispectral satellite imagery using a CNN-based classifier and predicts GLOF events based on the spatial patterns of snow, ice, and meltwater. Its tabular counterpart confirms this prediction by considering physical dynamics. TerraFlow models glacier velocity from NASA ITS_LIVE time series while TempFlow forecasts near-surface temperature from MODIS LST records; both are trained on long-term observational archives and integrated via harmonized preprocessing and synchronization to enable multimodal, physics-informed GLOF prediction. Both together provide cross-validation, which will improve the reliability and interpretability of GLOF detection. This system ensures strong predictive performance, rapid data processing for real-time use, and robustness to noise and missing information. IceWatch paves the way for automatic, scalable GLOF warning systems. It also holds potential for integration with diverse sensor inputs and global glacier monitoring activities.
The research undertakes a comprehensive comparative analysis of Kolmogorov-Arnold Networks (KAN) and Multi-Layer Perceptrons (MLP), highlighting their effectiveness in solving essential computational challenges like nonlinear function approximation, time-series prediction, and multivariate classification. Rooted in Kolmogorov's representation theorem, KANs utilize adaptive spline-based activation functions and grid-based structures, providing a transformative approach compared to traditional neural network frameworks. Utilizing a variety of datasets spanning mathematical function estimation (quadratic and cubic) to practical uses like predicting daily temperatures and categorizing wines, the proposed research thoroughly assesses model performance via accuracy measures like Mean Squared Error (MSE) and computational expense assessed through Floating Point Operations (FLOPs). The results indicate that KANs reliably exceed MLPs in every benchmark, attaining higher predictive accuracy with significantly reduced computational costs. Such an outcome highlights their ability to maintain a balance between computational efficiency and accuracy, rendering them especially beneficial in resource-limited and real-time operational environments. By elucidating the architectural and functional distinctions between KANs and MLPs, the paper provides a systematic framework for selecting the most suitable neural architectures for specific tasks. Furthermore, the proposed study highlights the transformative capabilities of KANs in progressing intelligent systems, influencing their use in situations that require both interpretability and computational efficiency.
Multivariate Time-Series (MTS) clustering is crucial for signal processing and data analysis. Although deep learning approaches, particularly those leveraging Contrastive Learning (CL), are prominent for MTS representation, existing CL-based models face two key limitations: 1) neglecting clustering information during positive/negative sample pair construction, and 2) introducing unreasonable inductive biases, e.g., destroying time dependence and periodicity through augmentation strategies, compromising representation quality. This paper, therefore, proposes a Temporal-Frequency Enhanced Contrastive (TFEC) learning framework. To preserve temporal structure while generating low-distortion representations, a temporal-frequency Co-EnHancement (CoEH) mechanism is introduced. Accordingly, a synergistic dual-path representation and cluster distribution learning framework is designed to jointly optimize cluster structure and representation fidelity. Experiments on six real-world benchmark datasets demonstrate TFEC's superiority, achieving 4.48% average NMI gains over SOTA methods, with ablation studies validating the design. The code of the paper is available at: https://github.com/yueliangy/TFEC.
Deep learning models, particularly recurrent neural networks and their variants, such as long short-term memory, have significantly advanced time series data analysis. These models capture complex, sequential patterns in time series, enabling real-time assessments. However, their high computational complexity and large model sizes pose challenges for deployment in resource-constrained environments, such as wearable devices and edge computing platforms. Knowledge Distillation (KD) offers a solution by transferring knowledge from a large, complex model (teacher) to a smaller, more efficient model (student), thereby retaining high performance while reducing computational demands. Current KD methods, originally designed for computer vision tasks, neglect the unique temporal dependencies and memory retention characteristics of time series models. To this end, we propose a novel KD framework termed Memory-Discrepancy Knowledge Distillation (MemKD). MemKD leverages a specialized loss function to capture memory retention discrepancies between the teacher and student models across subsequences within time series data, ensuring that the student model effectively mimics the teacher model's behaviour. This approach facilitates the development of compact, high-performing recurrent neural networks suitable for real-time, time series analysis tasks. Our extensive experiments demonstrate that MemKD significantly outperforms state-of-the-art KD methods. It reduces parameter size and memory usage by approximately 500 times while maintaining comparable performance to the teacher model.
This study develops a robust machine learning framework for one-step-ahead forecasting of daily log-returns in the Nepal Stock Exchange (NEPSE) Index using the XGBoost regressor. A comprehensive feature set is engineered, including lagged log-returns (up to 30 days) and established technical indicators such as short- and medium-term rolling volatility measures and the 14-period Relative Strength Index. Hyperparameter optimization is performed using Optuna with time-series cross-validation on the initial training segment. Out-of-sample performance is rigorously assessed via walk-forward validation under both expanding and fixed-length rolling window schemes across multiple lag configurations, simulating real-world deployment and avoiding lookahead bias. Predictive accuracy is evaluated using root mean squared error, mean absolute error, coefficient of determination (R-squared), and directional accuracy on both log-returns and reconstructed closing prices. Empirical results show that the optimal configuration, an expanding window with 20 lags, outperforms tuned ARIMA and Ridge regression benchmarks, achieving the lowest log-return RMSE (0.013450) and MAE (0.009814) alongside a directional accuracy of 65.15%. While the R-squared remains modest, consistent with the noisy nature of financial returns, primary emphasis is placed on relative error reduction and directional prediction. Feature importance analysis and visual inspection further enhance interpretability. These findings demonstrate the effectiveness of gradient boosting ensembles in modeling nonlinear dynamics in volatile emerging market time series and establish a reproducible benchmark for NEPSE Index forecasting.