Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
We analyze initialization dynamics for LDLT-based $\mathcal{L}$-Lipschitz layers by deriving the exact marginal output variance when the underlying parameter matrix $W_0\in \mathbb{R}^{m\times n}$ is initialized with IID Gaussian entries $\mathcal{N}(0,σ^2)$. The Wishart distribution, $S=W_0W_0^\top\sim\mathcal{W}_m(n,σ^2 \boldsymbol{I}_m)$, used for computing the output marginal variance is derived in closed form using expectations of zonal polynomials via James' theorem and a Laplace-integral expansion of $(α\boldsymbol{I}_m+S)^{-1}$. We develop an Isserlis/Wick-based combinatorial expansion for $\operatorname{\mathbb{E}}\left[\operatorname{tr}(S^k)\right]$ and provide explicit truncated moments up to $k=10$, which yield accurate series approximations for small-to-moderate $σ^2$. Monte Carlo experiments confirm the theoretical estimates. Furthermore, empirical analysis was performed to quantify that, using current He or Kaiming initialization with scaling $1/\sqrt{n}$, the output variance is $0.41$, whereas the new parameterization with $10/ \sqrt{n}$ for $α=1$ results in an output variance of $0.9$. The findings clarify why deep $\mathcal{L}$-Lipschitz networks suffer rapid information loss at initialization and offer practical prescriptions for choosing initialization hyperparameters to mitigate this effect. However, using the Higgs boson classification dataset, a hyperparameter sweep over optimizers, initialization scale, and depth was conducted to validate the results on real-world data, showing that although the derivation ensures variance preservation, empirical results indicate He initialization still performs better.
Chronic diseases such as diabetes pose significant management challenges, particularly due to the risk of complications like hypoglycemia, which require timely detection and intervention. Continuous health monitoring through wearable sensors offers a promising solution for early prediction of glycemic events. However, effective use of multisensor data is hindered by issues such as signal noise and frequent missing values. This study examines the limitations of existing datasets and emphasizes the temporal characteristics of key features relevant to hypoglycemia prediction. A comprehensive analysis of imputation techniques is conducted, focusing on those employed in state-of-the-art studies. Furthermore, imputation methods derived from machine learning and deep learning applications in other healthcare contexts are evaluated for their potential to address longer gaps in time-series data. Based on this analysis, a systematic paradigm is proposed, wherein imputation strategies are tailored to the nature of specific features and the duration of missing intervals. The review concludes by emphasizing the importance of investigating the temporal dynamics of individual features and the implementation of multiple, feature-specific imputation techniques to effectively address heterogeneous temporal patterns inherent in the data.
Large language models perform text generation through high-dimensional internal dynamics, yet the temporal organisation of these dynamics remains poorly understood. Most interpretability approaches emphasise static representations or causal interventions, leaving temporal structure largely unexplored. Drawing on neuroscience, where temporal integration and metastability are core markers of neural organisation, we adapt these concepts to transformer models and discuss a composite dynamical metric, computed from activation time-series during autoregressive generation. We evaluate this metric in GPT-2-medium across five conditions: structured reasoning, forced repetition, high-temperature noisy sampling, attention-head pruning, and weight-noise injection. Structured reasoning consistently exhibits elevated metric relative to repetitive, noisy, and perturbed regimes, with statistically significant differences confirmed by one-way ANOVA and large effect sizes in key comparisons. These results are robust to layer selection, channel subsampling, and random seeds. Our findings demonstrate that neuroscience-inspired dynamical metrics can reliably characterise differences in computational organisation across functional regimes in large language models. We stress that the proposed metric captures formal dynamical properties and does not imply subjective experience.
Root cause analysis in modern cloud infrastructure demands sophisticated understanding of heterogeneous data sources, particularly time-series performance metrics that involve core failure signatures. While large language models demonstrate remarkable capabilities in textual reasoning, their discrete token-based architecture creates fundamental incompatibilities with continuous numerical sequences exhibiting temporal dependencies. Current methodologies inadequately address this modality mismatch, constraining the potential of language model-driven automation in incident management workflows. This paper presents a multimodal diagnostic framework that harmonizes time-series representations with pretrained language model embedding spaces. Our approach contributes three technical advances: (1) a semantic compression technique that distills temporal segments into single-token abstractions while preserving pattern semantics, (2) an alignment encoder utilizing gated cross-attention to project time-series features into language model latent space, and (3) a retrieval-augmented diagnostic pipeline that synthesizes aligned embeddings with historical incident knowledge for expert-level failure attribution. Comprehensive evaluation across six cloud system benchmarks demonstrates that our framework achieves leading performance, reaching 48.75% diagnostic accuracy with notable improvements on scenarios involving compound failure modes. The results validate embedding-space alignment as an effective strategy for enabling language models to reason over multimodal telemetry data in production incident response contexts.
Drawing on psychological and literary theory, we investigated whether the warmth and competence of movie protagonists predict IMDb ratings, and whether these effects vary across genres. Using 2,858 films and series from the Movie Scripts Corpus, we identified protagonists via AI-assisted annotation and quantified their warmth and competence with the LLM_annotate package ([1]; human-LLM agreement: r = .83). Preregistered Bayesian regression analyses revealed theory-consistent but small associations between both warmth and competence and audience ratings, while genre-specific interactions did not meaningfully improve predictions. Male protagonists were slightly less warm than female protagonists, and movies with male leads received higher ratings on average (an association that was multiple times stronger than the relationships between movie ratings and warmth/competence). These findings suggest that, although audiences tend to favor warm, competent characters, the effects on movie evaluations are modest, indicating that character personality is only one of many factors shaping movie ratings. AI-assisted annotation with LLM_annotate and gpt-4.1-mini proved effective for large-scale analyses but occasionally fell short of manually generated annotations.
Existing methods of vector autoregressive model for multivariate time series analysis make use of low-rank matrix approximation or Tucker decomposition to reduce the dimension of the over-parameterization issue. In this paper, we propose a sparse Tucker decomposition method with graph regularization for high-dimensional vector autoregressive time series. By stacking the time-series transition matrices into a third-order tensor, the sparse Tucker decomposition is employed to characterize important interactions within the transition third-order tensor and reduce the number of parameters. Moreover, the graph regularization is employed to measure the local consistency of the response, predictor and temporal factor matrices in the vector autoregressive model.The two proposed regularization techniques can be shown to more accurate parameters estimation. A non-asymptotic error bound of the estimator of the proposed method is established, which is lower than those of the existing matrix or tensor based methods. A proximal alternating linearized minimization algorithm is designed to solve the resulting model and its global convergence is established under very mild conditions. Extensive numerical experiments on synthetic data and real-world datasets are carried out to verify the superior performance of the proposed method over existing state-of-the-art methods.
Accurate fMRI analysis requires sensitivity to temporal structure across multiple scales, as BOLD signals encode cognitive processes that emerge from fast transient dynamics to slower, large-scale fluctuations. Existing deep learning (DL) approaches to temporal modeling face challenges in jointly capturing these dynamics over long fMRI time series. Among current DL models, transformers address long-range dependencies by explicitly modeling pairwise interactions through attention, but the associated quadratic computational cost limits effective integration of temporal dependencies across long fMRI sequences. Selective state-space models (SSMs) instead model long-range temporal dependencies implicitly through latent state evolution in a dynamical system, enabling efficient propagation of dependencies over time. However, recent SSM-based approaches for fMRI commonly operate on derived functional connectivity representations and employ single-scale temporal processing. These design choices constrain the ability to jointly represent fast transient dynamics and slower global trends within a single model. We propose NeuroSSM, a selective state-space architecture designed for end-to-end analysis of raw BOLD signals in fMRI time series. NeuroSSM addresses the above limitations through two complementary design components: a multiscale state-space backbone that captures fast and slow dynamics concurrently, and a parallel differencing branch that increases sensitivity to transient state changes. Experiments on clinical and non-clinical datasets demonstrate that NeuroSSM achieves competitive performance and efficiency against state-of-the-art fMRI analysis methods.
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) via Central Limit Theorem-based construction and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis establishes convergence properties via a geometric projection mapping $\mathcal{P}$ and proves robustness to mini-batch noise. Central Limit Theorem-based construction of the interpretability DAG ensures statistical validity of edge orientation decisions. Empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
Time pressure critically influences risky maneuvers and crash proneness among powered two-wheeler riders, yet its prediction remains underexplored in intelligent transportation systems. We present a large-scale dataset of 129,000+ labeled multivariate time-series sequences from 153 rides by 51 participants under No, Low, and High Time Pressure conditions. Each sequence captures 63 features spanning vehicle kinematics, control inputs, behavioral violations, and environmental context. Our empirical analysis shows High Time Pressure induces 48% higher speeds, 36.4% greater speed variability, 58% more risky turns at intersections, 36% more sudden braking, and 50% higher rear brake forces versus No Time Pressure. To benchmark this dataset, we propose MotoTimePressure, a deep learning model combining convolutional preprocessing, dual-stage temporal attention, and Squeeze-and-Excitation feature recalibration, achieving 91.53% accuracy and 98.93% ROC AUC, outperforming eight baselines. Since time pressure cannot be directly measured in real time, we demonstrate its utility in collision prediction and threshold determination. Using MTPS-predicted time pressure as features, improves Informer-based collision risk accuracy from 91.25% to 93.51%, approaching oracle performance (93.72%). Thresholded time pressure states capture rider cognitive stress and enable proactive ITS interventions, including adaptive alerts, haptic feedback, V2I signaling, and speed guidance, supporting safer two-wheeler mobility under the Safe System Approach.
This paper provides a comprehensive comparison of domain generalization techniques applied to time series data within a drilling context, focusing on the prediction of a continuous Stick-Slip Index (SSI), a critical metric for assessing torsional downhole vibrations at the drill bit. The study aims to develop a robust regression model that can generalize across domains by training on 60 second labeled sequences of 1 Hz surface drilling data to predict the SSI. The model is tested in wells that are different from those used during training. To fine-tune the model architecture, a grid search approach is employed to optimize key hyperparameters. A comparative analysis of the Adversarial Domain Generalization (ADG), Invariant Risk Minimization (IRM) and baseline models is presented, along with an evaluation of the effectiveness of transfer learning (TL) in improving model performance. The ADG and IRM models achieve performance improvements of 10% and 8%, respectively, over the baseline model. Most importantly, severe events are detected 60% of the time, against 20% for the baseline model. Overall, the results indicate that both ADG and IRM models surpass the baseline, with the ADG model exhibiting a slight advantage over the IRM model. Additionally, applying TL to a pre-trained model further improves performance. Our findings demonstrate the potential of domain generalization approaches in drilling applications, with ADG emerging as the most effective approach.