Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
A novel Transformer variation architecture is proposed in the implicit sparse style. Unlike "traditional" Transformers, instead of attention to sequential or batch entities in their entirety of whole dimensionality, in the proposed Batch Transformers, attention to the "important" dimensions (primary components) is implemented. In such a way, the "important" dimensions or feature selection allows for a significant reduction of the bottleneck size in the encoder-decoder ANN architectures. The proposed architecture is tested on the synthetic image generation for the face recognition task in the case of the makeup and occlusion data set, allowing for increased variability of the limited original data set.




Facial Emotion Analysis (FEA) extends traditional facial emotion recognition by incorporating explainable, fine-grained reasoning. The task integrates three subtasks: emotion recognition, facial Action Unit (AU) recognition, and AU-based emotion reasoning to model affective states jointly. While recent approaches leverage Vision-Language Models (VLMs) and achieve promising results, they face two critical limitations: (1) hallucinated reasoning, where VLMs generate plausible but inaccurate explanations due to insufficient emotion-specific knowledge; and (2) misalignment between emotion reasoning and recognition, caused by fragmented connections between observed facial features and final labels. We propose Facial-R1, a three-stage alignment framework that effectively addresses both challenges with minimal supervision. First, we employ instruction fine-tuning to establish basic emotional reasoning capability. Second, we introduce reinforcement training guided by emotion and AU labels as reward signals, which explicitly aligns the generated reasoning process with the predicted emotion. Third, we design a data synthesis pipeline that iteratively leverages the prior stages to expand the training dataset, enabling scalable self-improvement of the model. Built upon this framework, we introduce FEA-20K, a benchmark dataset comprising 17,737 training and 1,688 test samples with fine-grained emotion analysis annotations. Extensive experiments across eight standard benchmarks demonstrate that Facial-R1 achieves state-of-the-art performance in FEA, with strong generalization and robust interpretability.
Dynamic facial expression recognition (DFER) aims to identify emotional states by modeling the temporal changes in facial movements across video sequences. A key challenge in DFER is the many-to-one labeling problem, where a video composed of numerous frames is assigned a single emotion label. A common strategy to mitigate this issue is to formulate DFER as a Multiple Instance Learning (MIL) problem. However, MIL-based approaches inherently suffer from the visual diversity of emotional expressions and the complexity of temporal dynamics. To address this challenge, we propose TG-DFER, a text-guided weakly supervised framework that enhances MIL-based DFER by incorporating semantic guidance and coherent temporal modeling. We incorporate a vision-language pre-trained (VLP) model is integrated to provide semantic guidance through fine-grained textual descriptions of emotional context. Furthermore, we introduce visual prompts, which align enriched textual emotion labels with visual instance features, enabling fine-grained reasoning and frame-level relevance estimation. In addition, a multi-grained temporal network is designed to jointly capture short-term facial dynamics and long-range emotional flow, ensuring coherent affective understanding across time. Extensive results demonstrate that TG-DFER achieves improved generalization, interpretability, and temporal sensitivity under weak supervision.




Facial Expression Recognition remains a challenging task, especially in unconstrained, real-world environments. This study investigates the performance of two lightweight models, YOLOv11n and YOLOv12n, which are the nano variants of the latest official YOLO series, within a unified detection and classification framework for FER. Two benchmark classification datasets, FER2013 and KDEF, are converted into object detection format and model performance is evaluated using mAP 0.5, precision, recall, and confusion matrices. Results show that YOLOv12n achieves the highest overall performance on the clean KDEF dataset with a mAP 0.5 of 95.6, and also outperforms YOLOv11n on the FER2013 dataset in terms of mAP 63.8, reflecting stronger sensitivity to varied expressions. In contrast, YOLOv11n demonstrates higher precision 65.2 on FER2013, indicating fewer false positives and better reliability in noisy, real-world conditions. On FER2013, both models show more confusion between visually similar expressions, while clearer class separation is observed on the cleaner KDEF dataset. These findings underscore the trade-off between sensitivity and precision, illustrating how lightweight YOLO models can effectively balance performance and efficiency. The results demonstrate adaptability across both controlled and real-world conditions, establishing these models as strong candidates for real-time, resource-constrained emotion-aware AI applications.
Facial expression recognition, as a vital computer vision task, is garnering significant attention and undergoing extensive research. Although facial expression recognition algorithms demonstrate impressive performance on high-resolution images, their effectiveness tends to degrade when confronted with low-resolution images. We find it is because: 1) low-resolution images lack detail information; 2) current methods complete weak global modeling, which make it difficult to extract discriminative features. To alleviate the above issues, we proposed a novel global multiple extraction network (GME-Net) for low-resolution facial expression recognition, which incorporates 1) a hybrid attention-based local feature extraction module with attention similarity knowledge distillation to learn image details from high-resolution network; 2) a multi-scale global feature extraction module with quasi-symmetric structure to mitigate the influence of local image noise and facilitate capturing global image features. As a result, our GME-Net is capable of extracting expression-related discriminative features. Extensive experiments conducted on several widely-used datasets demonstrate that the proposed GME-Net can better recognize low-resolution facial expression and obtain superior performance than existing solutions.
This paper addresses data quality issues in multimodal emotion recognition in conversation (MERC) through systematic quality control and multi-stage transfer learning. We implement a quality control pipeline for MELD and IEMOCAP datasets that validates speaker identity, audio-text alignment, and face detection. We leverage transfer learning from speaker and face recognition, assuming that identity-discriminative embeddings capture not only stable acoustic and Facial traits but also person-specific patterns of emotional expression. We employ RecoMadeEasy(R) engines for extracting 512-dimensional speaker and face embeddings, fine-tune MPNet-v2 for emotion-aware text representations, and adapt these features through emotion-specific MLPs trained on unimodal datasets. MAMBA-based trimodal fusion achieves 64.8% accuracy on MELD and 74.3% on IEMOCAP. These results show that combining identity-based audio and visual embeddings with emotion-tuned text representations on a quality-controlled subset of data yields consistent competitive performance for multimodal emotion recognition in conversation and provides a basis for further improvement on challenging, low-frequency emotion classes.




Multimodal emotion recognition plays a key role in many domains, including mental health monitoring, educational interaction, and human-computer interaction. However, existing methods often face three major challenges: unbalanced category distribution, the complexity of dynamic facial action unit time modeling, and the difficulty of feature fusion due to modal heterogeneity. With the explosive growth of multimodal data in social media scenarios, the need for building an efficient cross-modal fusion framework for emotion recognition is becoming increasingly urgent. To this end, this paper proposes Multimodal Cross-Attention Network and Contrastive Learning (MCN-CL) for multimodal emotion recognition. It uses a triple query mechanism and hard negative mining strategy to remove feature redundancy while preserving important emotional cues, effectively addressing the issues of modal heterogeneity and category imbalance. Experiment results on the IEMOCAP and MELD datasets show that our proposed method outperforms state-of-the-art approaches, with Weighted F1 scores improving by 3.42% and 5.73%, respectively.




Micro expression recognition (MER) is crucial for inferring genuine emotion. Applying a multimodal large language model (MLLM) to this task enables spatio-temporal analysis of facial motion and provides interpretable descriptions. However, there are still two core challenges: (1) The entanglement of static appearance and dynamic motion cues prevents the model from focusing on subtle motion; (2) Textual labels in existing MER datasets do not fully correspond to underlying facial muscle movements, creating a semantic gap between text supervision and physical motion. To address these issues, we propose DEFT-LLM, which achieves motion semantic alignment by multi-expert disentanglement. We first introduce Uni-MER, a motion-driven instruction dataset designed to align text with local facial motion. Its construction leverages dual constraints from optical flow and Action Unit (AU) labels to ensure spatio-temporal consistency and reasonable correspondence to the movements. We then design an architecture with three experts to decouple facial dynamics into independent and interpretable representations (structure, dynamic textures, and motion-semantics). By integrating the instruction-aligned knowledge from Uni-MER into DEFT-LLM, our method injects effective physical priors for micro expressions while also leveraging the cross modal reasoning ability of large language models, thus enabling precise capture of subtle emotional cues. Experiments on multiple challenging MER benchmarks demonstrate state-of-the-art performance, as well as a particular advantage in interpretable modeling of local facial motion.
Face recognition systems are increasingly deployed across a wide range of applications, including smartphone authentication, access control, and border security. However, these systems remain vulnerable to presentation attacks (PAs), which can significantly compromise their reliability. In this work, we introduce a new dataset focused on a novel and realistic presentation attack instrument called Nylon Face Masks (NFMs), designed to simulate advanced 3D spoofing scenarios. NFMs are particularly concerning due to their elastic structure and photorealistic appearance, which enable them to closely mimic the victim's facial geometry when worn by an attacker. To reflect real-world smartphone-based usage conditions, we collected the dataset using an iPhone 11 Pro, capturing 3,760 bona fide samples from 100 subjects and 51,281 NFM attack samples across four distinct presentation scenarios involving both humans and mannequins. We benchmark the dataset using five state-of-the-art PAD methods to evaluate their robustness under unseen attack conditions. The results demonstrate significant performance variability across methods, highlighting the challenges posed by NFMs and underscoring the importance of developing PAD techniques that generalise effectively to emerging spoofing threats.
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.