Abstract:Latent fingerprint identification remains a challenging task due to low image quality, background noise, and partial impressions. In this work, we propose a novel identification approach called LatentPrintFormer. The proposed model integrates a CNN backbone (EfficientNet-B0) and a Transformer backbone (Swin Tiny) to extract both local and global features from latent fingerprints. A spatial attention module is employed to emphasize high-quality ridge regions while suppressing background noise. The extracted features are fused and projected into a unified 512-dimensional embedding, and matching is performed using cosine similarity in a closed-set identification setting. Extensive experiments on two publicly available datasets demonstrate that LatentPrintFormer consistently outperforms three state-of-the-art latent fingerprint recognition techniques, achieving higher identification rates across Rank-10.
Abstract:Face recognition systems are increasingly deployed across a wide range of applications, including smartphone authentication, access control, and border security. However, these systems remain vulnerable to presentation attacks (PAs), which can significantly compromise their reliability. In this work, we introduce a new dataset focused on a novel and realistic presentation attack instrument called Nylon Face Masks (NFMs), designed to simulate advanced 3D spoofing scenarios. NFMs are particularly concerning due to their elastic structure and photorealistic appearance, which enable them to closely mimic the victim's facial geometry when worn by an attacker. To reflect real-world smartphone-based usage conditions, we collected the dataset using an iPhone 11 Pro, capturing 3,760 bona fide samples from 100 subjects and 51,281 NFM attack samples across four distinct presentation scenarios involving both humans and mannequins. We benchmark the dataset using five state-of-the-art PAD methods to evaluate their robustness under unseen attack conditions. The results demonstrate significant performance variability across methods, highlighting the challenges posed by NFMs and underscoring the importance of developing PAD techniques that generalise effectively to emerging spoofing threats.