Text classification is the process of categorizing text documents into predefined categories or labels.
This study investigates the feature representations produced by publicly available open source medical vision-language models (VLMs). While medical VLMs are expected to capture diagnostically relevant features, their learned representations remain underexplored, and standard evaluations like classification accuracy do not fully reveal if they acquire truly discriminative, lesion-specific features. Understanding these representations is crucial for revealing medical image structures and improving downstream tasks in medical image analysis. This study aims to investigate the feature distributions learned by medical VLMs and evaluate the impact of medical specialization. We analyze the feature distribution of multiple image modalities extracted by some representative medical VLMs across lesion classification datasets on multiple modalities. These distributions were compared them with non-medical VLMs to assess the domain-specific medical training. Our experiments showed that medical VLMs can extract discriminative features that are effective for medical classification tasks. Moreover, it was found that non-medical VLMs with recent improvement with contextual enrichment such as LLM2CLIP produce more refined feature representations. Our results imply that enhancing text encoder is more crucial than training intensively on medical images when developing medical VLMs. Notably, non-medical models are particularly vulnerable to biases introduced by overlaied text strings on images. These findings underscore the need for careful consideration on model selection according to downstream tasks besides potential risks in inference due to background biases such as textual information in images.
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.
Vision-Language Models (VLMs), particularly CLIP, have revolutionized anomaly detection by enabling zero-shot and few-shot defect identification without extensive labeled datasets. By learning aligned representations of images and text, VLMs facilitate anomaly classification and segmentation through natural language descriptions of normal and abnormal states, eliminating traditional requirements for task-specific training or defect examples. This project presents a comprehensive analysis of VLM-based approaches for anomaly classification (AC) and anomaly segmentation (AS). We systematically investigate key architectural paradigms including sliding window-based dense feature extraction (WinCLIP), multi-stage feature alignment with learnable projections (AprilLab framework), and compositional prompt ensemble strategies. Our analysis evaluates these methods across critical dimensions: feature extraction mechanisms, text-visual alignment strategies, prompt engineering techniques, zero-shot versus few-shot trade-offs, computational efficiency, and cross-domain generalization. Through rigorous experimentation on benchmarks such as MVTec AD and VisA, we compare classification accuracy, segmentation precision, and inference efficiency. The primary contribution is a foundational understanding of how and why VLMs succeed in anomaly detection, synthesizing practical insights for method selection and identifying current limitations. This work aims to facilitate informed adoption of VLM-based methods in industrial quality control and guide future research directions.
Recognizing and navigating client resistance is critical for effective mental health counseling, yet detecting such behaviors is particularly challenging in text-based interactions. Existing NLP approaches oversimplify resistance categories, ignore the sequential dynamics of therapeutic interventions, and offer limited interpretability. To address these limitations, we propose PsyFIRE, a theoretically grounded framework capturing 13 fine-grained resistance behaviors alongside collaborative interactions. Based on PsyFIRE, we construct the ClientResistance corpus with 23,930 annotated utterances from real-world Chinese text-based counseling, each supported by context-specific rationales. Leveraging this dataset, we develop RECAP, a two-stage framework that detects resistance and fine-grained resistance types with explanations. RECAP achieves 91.25% F1 for distinguishing collaboration and resistance and 66.58% macro-F1 for fine-grained resistance categories classification, outperforming leading prompt-based LLM baselines by over 20 points. Applied to a separate counseling dataset and a pilot study with 62 counselors, RECAP reveals the prevalence of resistance, its negative impact on therapeutic relationships and demonstrates its potential to improve counselors' understanding and intervention strategies.
Whisper has become the de-facto encoder for extracting general-purpose audio features in large audio-language models, where a 30-second clip is typically represented by 1500 frame features projected into an LLM. In contrast, audio-text embedding models like CLAP-based models have largely relied on alternative audio encoders (e.g., HTS-AT, PaSST), and have not leveraged Whisper effectively. We present WavLink, a compact audio-text embedding model that augments Whisper encoder with a learnable global token, trained jointly with a text encoder. Through a systematic study of design choices, including pretrained text encoders, loss functions, training modes, and data mixtures, we identify configurations that yield state-of-the-art retrieval performance. Our two-stage training recipe across three model sizes, combined with Matryoshka-style supervision, improves scalability, enabling 8x smaller embeddings with minimal performance drop. WavLink also demonstrates competitive performance on AIR-Bench with MCQs and zero-shot classification.
Qualitative research often contains personal, contextual, and organizational details that pose privacy risks if not handled appropriately. Manual anonymization is time-consuming, inconsistent, and frequently omits critical identifiers. Existing automated tools tend to rely on pattern matching or fixed rules, which fail to capture context and may alter the meaning of the data. This study uses local LLMs to build a reliable, repeatable, and context-aware anonymization process for detecting and anonymizing sensitive data in qualitative transcripts. We introduce a Structured Framework for Adaptive Anonymizer (SFAA) that includes three steps: detection, classification, and adaptive anonymization. The SFAA incorporates four anonymization strategies: rule-based substitution, context-aware rewriting, generalization, and suppression. These strategies are applied based on the identifier type and the risk level. The identifiers handled by the SFAA are guided by major international privacy and research ethics standards, including the GDPR, HIPAA, and OECD guidelines. This study followed a dual-method evaluation that combined manual and LLM-assisted processing. Two case studies were used to support the evaluation. The first includes 82 face-to-face interviews on gamification in organizations. The second involves 93 machine-led interviews using an AI-powered interviewer to test LLM awareness and workplace privacy. Two local models, LLaMA and Phi were used to evaluate the performance of the proposed framework. The results indicate that the LLMs found more sensitive data than a human reviewer. Phi outperformed LLaMA in finding sensitive data, but made slightly more errors. Phi was able to find over 91% of the sensitive data and 94.8% kept the same sentiment as the original text, which means it was very accurate, hence, it does not affect the analysis of the qualitative data.
Interpretability is significant in computational pathology, leading to the development of multimodal information integration from histopathological image and corresponding text data.However, existing multimodal methods have limited interpretability due to the lack of high-quality dataset that support explicit reasoning and inference and simple reasoning process.To address the above problems, we introduce a novel multimodal pathology large language model with strong reasoning capabilities.To improve the generation of accurate and contextually relevant textual descriptions, we design a semantic reward strategy integrated with group relative policy optimization.We construct a high-quality pathology visual question answering (VQA) dataset, specifically designed to support complex reasoning tasks.Comprehensive experiments conducted on this dataset demonstrate that our method outperforms state-of-the-art methods, even when trained with only 20% of the data.Our method also achieves comparable performance on downstream zero-shot image classification task compared with CLIP.
Joint audio-text models are widely used for music retrieval, yet they struggle with semantic phenomena such as negation. Negation is fundamental for distinguishing the absence (or presence) of musical elements (e.g., "with vocals" vs. "without vocals"), but current systems fail to represent this reliably. In this work, we investigate and mitigate this limitation by training CLAP models from scratch on the Million Song Dataset with LP-MusicCaps-MSD captions. We introduce negation through text augmentation and a dissimilarity-based contrastive loss, designed to explicitly separate original and negated captions in the joint embedding space. To evaluate progress, we propose two protocols that frame negation modeling as retrieval and binary classification tasks. Experiments demonstrate that both methods, individually and combined, improve negation handling while largely preserving retrieval performance.
Knowledge Graphs~(KGs) often suffer from unreliable knowledge, which restricts their utility. Triple Classification~(TC) aims to determine the validity of triples from KGs. Recently, text-based methods learn entity and relation representations from natural language descriptions, significantly improving the generalization capabilities of TC models and setting new benchmarks in performance. However, there are still two critical challenges. First, existing methods often ignore the effective semantic interaction among different KG components. Second, most approaches adopt single binary classification training objective, leading to insufficient semantic representation learning. To address these challenges, we propose \textbf{SASA}, a novel framework designed to enhance TC models via separated attention mechanism and semantic-aware contrastive learning~(CL). Specifically, we first propose separated attention mechanism to encode triples into decoupled contextual representations and then fuse them through a more effective interactive way. Then, we introduce semantic-aware hierarchical CL as auxiliary training objective to guide models in improving their discriminative capabilities and achieving sufficient semantic learning, considering both local level and global level CL. Experimental results across two benchmark datasets demonstrate that SASA significantly outperforms state-of-the-art methods. In terms of accuracy, we advance the state-of-the-art by +5.9\% on FB15k-237 and +3.4\% on YAGO3-10.
The proliferation of sophisticated generative AI models has significantly escalated the threat of synthetic manipulations in identity documents, particularly through face swapping and text inpainting attacks. This paper presents TwoHead-SwinFPN, a unified deep learning architecture that simultaneously performs binary classification and precise localization of manipulated regions in ID documents. Our approach integrates a Swin Transformer backbone with Feature Pyramid Network (FPN) and UNet-style decoder, enhanced with Convolutional Block Attention Module (CBAM) for improved feature representation. The model employs a dual-head architecture for joint optimization of detection and segmentation tasks, utilizing uncertainty-weighted multi-task learning. Extensive experiments on the FantasyIDiap dataset demonstrate superior performance with 84.31\% accuracy, 90.78\% AUC for classification, and 57.24\% mean Dice score for localization. The proposed method achieves an F1-score of 88.61\% for binary classification while maintaining computational efficiency suitable for real-world deployment through FastAPI implementation. Our comprehensive evaluation includes ablation studies, cross-device generalization analysis, and detailed performance assessment across 10 languages and 3 acquisition devices.