Text classification is the process of categorizing text documents into predefined categories or labels.
Of the over 7,000 languages spoken in the world, commercial language identification (LID) systems only reliably identify a few hundred in written form. Research-grade systems extend this coverage under certain circumstances, but for most languages coverage remains patchy or nonexistent. This position paper argues that this situation is largely self-imposed. In particular, it arises from a persistent framing of LID as decontextualized text classification, which obscures the central role of prior probability estimation and is reinforced by institutional incentives that favor global, fixed-prior models. We argue that improving coverage for tail languages requires rethinking LID as a routing problem and developing principled ways to incorporate environmental cues that make languages locally plausible.
Emotion classification plays a significant role in emotion prediction and harmful content detection. Recent advancements in NLP, particularly through large language models (LLMs), have greatly improved outcomes in this field. This study introduces ViGoEmotions -- a Vietnamese emotion corpus comprising 20,664 social media comments in which each comment is classified into 27 fine-grained distinct emotions. To evaluate the quality of the dataset and its impact on emotion classification, eight pre-trained Transformer-based models were evaluated under three preprocessing strategies: preserving original emojis with rule-based normalization, converting emojis into textual descriptions, and applying ViSoLex, a model-based lexical normalization system. Results show that converting emojis into text often improves the performance of several BERT-based baselines, while preserving emojis yields the best results for ViSoBERT and CafeBERT. In contrast, removing emojis generally leads to lower performance. ViSoBERT achieved the highest Macro F1-score of 61.50% and Weighted F1-score of 63.26%. Strong performance was also observed from CafeBERT and PhoBERT. These findings highlight that while the proposed corpus can support diverse architectures effectively, preprocessing strategies and annotation quality remain key factors influencing downstream performance.
Existing forgery detection methods are often limited to uni-modal or bi-modal settings, failing to handle the interleaved text, images, and videos prevalent in real-world misinformation. To bridge this gap, this paper targets to develop a unified framework for omnibus vision-language forgery detection and grounding. In this unified setting, the {interplay} between diverse modalities and the dual requirements of simultaneous detection and localization pose a critical ``difficulty bias`` problem: the simpler veracity classification task tends to dominate the gradients, leading to suboptimal performance in fine-grained grounding during multi-task optimization. To address this challenge, we propose \textbf{OmniVL-Guard}, a balanced reinforcement learning framework for omnibus vision-language forgery detection and grounding. Particularly, OmniVL-Guard comprises two core designs: Self-Evolving CoT Generatio and Adaptive Reward Scaling Policy Optimization (ARSPO). {Self-Evolving CoT Generation} synthesizes high-quality reasoning paths, effectively overcoming the cold-start challenge. Building upon this, {Adaptive Reward Scaling Policy Optimization (ARSPO)} dynamically modulates reward scales and task weights, ensuring a balanced joint optimization. Extensive experiments demonstrate that OmniVL-Guard significantly outperforms state-of-the-art methods and exhibits zero-shot robust generalization across out-of-domain scenarios.
Recent studies have shown that CLIP model's adversarial robustness in zero-shot classification tasks can be enhanced by adversarially fine-tuning its image encoder with adversarial examples (AEs), which are generated by minimizing the cosine similarity between images and a hand-crafted template (e.g., ''A photo of a {label}''). However, it has been shown that the cosine similarity between a single image and a single hand-crafted template is insufficient to measure the similarity for image-text pairs. Building on this, in this paper, we find that the AEs generated using cosine similarity may fail to fool CLIP when the similarity metric is replaced with semantically enriched alternatives, making the image encoder fine-tuned with these AEs less robust. To overcome this issue, we first propose a semantic-ensemble attack to generate semantic-aware AEs by minimizing the average similarity between the original image and an ensemble of refined textual descriptions. These descriptions are initially generated by a foundation model to capture core semantic features beyond hand-crafted templates and are then refined to reduce hallucinations. To this end, we propose Semantic-aware Adversarial Fine-Tuning (SAFT), which fine-tunes CLIP's image encoder with semantic-aware AEs. Extensive experiments show that SAFT outperforms current methods, achieving substantial improvements in zero-shot adversarial robustness across 16 datasets. Our code is available at: https://github.com/tmlr-group/SAFT.
Large language models (LLMs) such as GPT-4o and Claude Sonnet 4.5 have demonstrated strong capabilities in open-ended reasoning and generative language tasks, leading to their widespread adoption across a broad range of NLP applications. However, for structured text classification problems with fixed label spaces, model selection is often driven by predictive performance alone, overlooking operational constraints encountered in production systems. In this work, we present a systematic comparison of two contrasting paradigms for text classification: zero- and few-shot prompt-based large language models, and fully fine-tuned encoder-only architectures. We evaluate these approaches across four canonical benchmarks (IMDB, SST-2, AG News, and DBPedia), measuring predictive quality (macro F1), inference latency, and monetary cost. We frame model evaluation as a multi-objective decision problem and analyze trade-offs using Pareto frontier projections and a parameterized utility function reflecting different deployment regimes. Our results show that fine-tuned encoder-based models from the BERT family achieve competitive, and often superior, classification performance while operating at one to two orders of magnitude lower cost and latency compared to zero- and few-shot LLM prompting. Overall, our findings suggest that indiscriminate use of large language models for standard text classification workloads can lead to suboptimal system-level outcomes. Instead, fine-tuned encoders emerge as robust and efficient components for structured NLP pipelines, while LLMs are better positioned as complementary elements within hybrid architectures. We release all code, datasets, and evaluation protocols to support reproducibility and cost-aware NLP system design.
Fine-grained truck classification is critical for intelligent transportation systems (ITS), yet current LiDAR-based methods face scalability challenges due to their reliance on supervised deep learning and labor-intensive manual annotation. Vision-Language Models (VLMs) offer promising few-shot generalization, but their application to roadside LiDAR is limited by a modality gap between sparse 3D point clouds and dense 2D imagery. We propose a framework that bridges this gap by adapting off-the-shelf VLMs for fine-grained truck classification without parameter fine-tuning. Our new depth-aware image generation pipeline applies noise removal, spatial and temporal registration, orientation rectification, morphological operations, and anisotropic smoothing to transform sparse, occluded LiDAR scans into depth-encoded 2D visual proxies. Validated on a real-world dataset of 20 vehicle classes, our approach achieves competitive classification accuracy with as few as 16-30 examples per class, offering a scalable alternative to data-intensive supervised baselines. We further observe a "Semantic Anchor" effect: text-based guidance regularizes performance in ultra-low-shot regimes $k < 4$, but degrades accuracy in more-shot settings due to semantic mismatch. Furthermore, we demonstrate the efficacy of this framework as a Cold Start strategy, using VLM-generated labels to bootstrap lightweight supervised models. Notably, the few-shot VLM-based model achieves over correct classification rate of 75 percent for specific drayage categories (20ft, 40ft, and 53ft containers) entirely without the costly training or fine-tuning, significantly reducing the intensive demands of initial manual labeling, thus achieving a method of practical use in ITS applications.
The rapid advancement of generative AI has raised concerns about the authenticity of digital images, as highly realistic fake images can now be generated at low cost, potentially increasing societal risks. In response, several datasets have been established to train detection models aimed at distinguishing AI-generated images from real ones. However, existing datasets suffer from limited generalization, low image quality, overly simple prompts, and insufficient image diversity. To address these limitations, we propose a high-quality, large-scale dataset comprising over 730,000 images across multiple categories, including both real and AI-generated images. The generated images are synthesized via state-of-the-art methods, including text-to-image generation (guided by over 10,000 carefully designed prompts), image inpainting, image refinement, and face swapping. Each generated image is annotated with its generation method and category. Inpainting images further include binary masks to indicate inpainted regions, providing rich metadata for analysis. Compared to existing datasets, detection models trained on our dataset demonstrate superior generalization capabilities. Our dataset not only serves as a strong benchmark for evaluating detection methods but also contributes to advancing the robustness of AI-generated image detection techniques. Building upon this, we propose a lightweight detection method based on image noise entropy, which transforms the original image into an entropy tensor of Non-Local Means (NLM) noise before classification. Extensive experiments demonstrate that models trained on our dataset achieve strong generalization, and our method delivers competitive performance, establishing a solid baseline for future research. The dataset and source code are publicly available at https://real-hd.github.io.
Deploying autonomous edge robotics in dynamic military environments is constrained by both scarce domain-specific training data and the computational limits of edge hardware. This paper introduces a hierarchical, zero-shot framework that cascades lightweight object detection with compact Vision-Language Models (VLMs) from the Qwen and Gemma families (4B-12B parameters). Grounding DINO serves as a high-recall, text-promptable region proposer, and frames with high detection confidence are passed to edge-class VLMs for semantic verification. We evaluate this pipeline on 55 high-fidelity synthetic videos from Battlefield 6 across three tasks: false-positive filtering (up to 100% accuracy), damage assessment (up to 97.5%), and fine-grained vehicle classification (55-90%). We further extend the pipeline into an agentic Scout-Commander workflow, achieving 100% correct asset deployment and a 9.8/10 reasoning score (graded by GPT-4o) with sub-75-second latency. A novel "Controlled Input" methodology decouples perception from reasoning, revealing distinct failure phenotypes: Gemma3-12B excels at tactical logic but fails in visual perception, while Gemma3-4B exhibits reasoning collapse even with accurate inputs. These findings validate hierarchical zero-shot architectures for edge autonomy and provide a diagnostic framework for certifying VLM suitability in safety-critical applications.
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
Most existing CLIP-style medical vision--language pretraining methods rely on global or local alignment with substantial paired data. However, global alignment is easily dominated by non-diagnostic information, while local alignment fails to integrate key diagnostic evidence. As a result, learning reliable diagnostic representations becomes difficult, which limits their applicability in medical scenarios with limited paired data. To address this issue, we propose an LLM-Guided Diagnostic Evidence Alignment method (LGDEA), which shifts the pretraining objective toward evidence-level alignment that is more consistent with the medical diagnostic process. Specifically, we leverage LLMs to extract key diagnostic evidence from radiology reports and construct a shared diagnostic evidence space, enabling evidence-aware cross-modal alignment and allowing LGDEA to effectively exploit abundant unpaired medical images and reports, thereby substantially alleviating the reliance on paired data. Extensive experimental results demonstrate that our method achieves consistent and significant improvements on phrase grounding, image--text retrieval, and zero-shot classification, and even rivals pretraining methods that rely on substantial paired data.