Text classification is the process of categorizing text documents into predefined categories or labels.
Zero-shot anomaly detection (ZSAD) often leverages pretrained vision or vision-language models, but many existing methods use prompt learning or complex modeling to fit the data distribution, resulting in high training or inference cost and limited cross-domain stability. To address these limitations, we propose Memory-Retrieval Anomaly Detection method (MRAD), a unified framework that replaces parametric fitting with a direct memory retrieval. The train-free base model, MRAD-TF, freezes the CLIP image encoder and constructs a two-level memory bank (image-level and pixel-level) from auxiliary data, where feature-label pairs are explicitly stored as keys and values. During inference, anomaly scores are obtained directly by similarity retrieval over the memory bank. Based on the MRAD-TF, we further propose two lightweight variants as enhancements: (i) MRAD-FT fine-tunes the retrieval metric with two linear layers to enhance the discriminability between normal and anomaly; (ii) MRAD-CLIP injects the normal and anomalous region priors from the MRAD-FT as dynamic biases into CLIP's learnable text prompts, strengthening generalization to unseen categories. Across 16 industrial and medical datasets, the MRAD framework consistently demonstrates superior performance in anomaly classification and segmentation, under both train-free and training-based settings. Our work shows that fully leveraging the empirical distribution of raw data, rather than relying only on model fitting, can achieve stronger anomaly detection performance. The code will be publicly released at https://github.com/CROVO1026/MRAD.
Prostate cancer (PCa) is one of the most common cancers in men worldwide. Bi-parametric MRI (bp-MRI) and clinical variables are crucial for PCa identification and improving treatment decisions. However, this process is subjective to expert interpretations. Furthermore, most existing computer-aided diagnosis methods focus on imaging-based models, overlooking the clinical context and suffering from data scarcity, limiting their ability to learn robust representations. We propose a geometric multimodal Foundation Model (FM), named MFM-Geom, that learns representations from bp-MRI and clinical reports, encoding visual findings and information from the context of clinical variables. In the representations classification head, the approach leverages symmetric positive definite (SPD) matrices and Riemannian deep learning to integrate imaging-text representations from a biomedical multimodal FM. Using 10% of the training data, MFM-Geom outperformed baseline class token embedding-based classification (+8.3%, AUC-PR of 90.67). Generalization on external dataset confirmed the robustness of fine-tuning biomedical FM, achieving an AUC-PR of 90.6.
Digital watermarking is essential for securing generated images from diffusion models. Accurate watermark evaluation is critical for algorithm development, yet existing methods have significant limitations: they lack a unified framework for both residual and semantic watermarks, provide results without interpretability, neglect comprehensive security considerations, and often use inappropriate metrics for semantic watermarks. To address these gaps, we propose WMVLM, the first unified and interpretable evaluation framework for diffusion model image watermarking via vision-language models (VLMs). We redefine quality and security metrics for each watermark type: residual watermarks are evaluated by artifact strength and erasure resistance, while semantic watermarks are assessed through latent distribution shifts. Moreover, we introduce a three-stage training strategy to progressively enable the model to achieve classification, scoring, and interpretable text generation. Experiments show WMVLM outperforms state-of-the-art VLMs with strong generalization across datasets, diffusion models, and watermarking methods.
Masked diffusion language models (MDLMs) have emerged as a promising alternative to dominant autoregressive approaches. Although they achieve competitive performance on several tasks, a substantial gap remains in open-ended text generation. We hypothesize that one cause of this gap is that strict positional prediction makes MDLM decoding highly sensitive to token misalignment, and we show through controlled interventions that a one-position shift can severely disrupt semantics. This observation suggests that enforcing strict positional supervision during training is misaligned with the irreversible denoising dynamics of MDLM decoding. Motivated by this mismatch, we adopt an alignment-flexible supervision strategy during fine-tuning. Specifically, we introduce a special token <slack> via the connectionist temporal classification objective. We apply this approach to the widely used MDLM model and conduct experiments on five open-ended text generation benchmarks. Our method consistently outperforms the original model and improves robustness to positional shifts, indicating that relaxing strict positional supervision is an important factor in improving generation quality in MDLMs.
Hierarchical text classification (HTC) depends on taxonomies that organize labels into structured hierarchies. However, many real-world taxonomies introduce ambiguities, such as identical leaf names under similar parent nodes, which prevent language models (LMs) from learning clear decision boundaries. In this paper, we present TaxMorph, a framework that uses large language models (LLMs) to transform entire taxonomies through operations such as renaming, merging, splitting, and reordering. Unlike prior work, our method revises the full hierarchy to better match the semantics encoded by LMs. Experiments across three HTC benchmarks show that LLM-refined taxonomies consistently outperform human-curated ones in various settings up to +2.9pp. in F1. To better understand these improvements, we compare how well LMs can assign leaf nodes to parent nodes and vice versa across human-curated and LLM-refined taxonomies. We find that human-curated taxonomies lead to more easily separable clusters in embedding space. However, the LLM-refined taxonomies align more closely with the model's actual confusion patterns during classification. In other words, even though they are harder to separate, they better reflect the model's inductive biases. These findings suggest that LLM-guided refinement creates taxonomies that are more compatible with how models learn, improving HTC performance.
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
Despite their empirical success, neural network classifiers remain difficult to interpret. In softmax-based models, class regions are defined implicitly as solutions to systems of inequalities among logits, making them difficult to extract and visualize. We introduce Partition of Unity Neural Networks (PUNN), an architecture in which class probabilities arise directly from a learned partition of unity, without requiring a softmax layer. PUNN constructs $k$ nonnegative functions $h_1, \ldots, h_k$ satisfying $\sum_i h_i(x) = 1$, where each $h_i(x)$ directly represents $P(\text{class } i \mid x)$. Unlike softmax, where class regions are defined implicitly through coupled inequalities among logits, each PUNN partition function $h_i$ directly defines the probability of class $i$ as a standalone function of $x$. We prove that PUNN is dense in the space of continuous probability maps on compact domains. The gate functions $g_i$ that define the partition can use various activation functions (sigmoid, Gaussian, bump) and parameterizations ranging from flexible MLPs to parameter-efficient shape-informed designs (spherical shells, ellipsoids, spherical harmonics). Experiments on synthetic data, UCI benchmarks, and MNIST show that PUNN with MLP-based gates achieves accuracy within 0.3--0.6\% of standard multilayer perceptrons. When geometric priors match the data structure, shape-informed gates achieve comparable accuracy with up to 300$\times$ fewer parameters. These results demonstrate that interpretable-by-design architectures can be competitive with black-box models while providing transparent class probability assignments.
In this paper, we address a fundamental gap between pre-training and fine-tuning of deep neural networks: while pre-training has shifted from unimodal to multimodal learning with enhanced visual understanding, fine-tuning predominantly remains unimodal, limiting the benefits of rich pre-trained representations. To bridge this gap, we propose a novel approach that transforms unimodal datasets into multimodal ones using Multimodal Large Language Models (MLLMs) to generate synthetic image captions for fine-tuning models with a multimodal objective. Our method employs carefully designed prompts incorporating class labels and domain context to produce high-quality captions tailored for classification tasks. Furthermore, we introduce a supervised contrastive loss function that explicitly encourages clustering of same-class representations during fine-tuning, along with a new inference technique that leverages class-averaged text embeddings from multiple synthetic captions per image. Extensive experiments across 13 image classification benchmarks demonstrate that our approach outperforms baseline methods, with particularly significant improvements in few-shot learning scenarios. Our work establishes a new paradigm for dataset enhancement that effectively bridges the gap between multimodal pre-training and fine-tuning. Our code is available at https://github.com/s-enmt/MMFT.
This paper presents YOLOE-26, a unified framework that integrates the deployment-optimized YOLO26(or YOLOv26) architecture with the open-vocabulary learning paradigm of YOLOE for real-time open-vocabulary instance segmentation. Building on the NMS-free, end-to-end design of YOLOv26, the proposed approach preserves the hallmark efficiency and determinism of the YOLO family while extending its capabilities beyond closed-set recognition. YOLOE-26 employs a convolutional backbone with PAN/FPN-style multi-scale feature aggregation, followed by end-to-end regression and instance segmentation heads. A key architectural contribution is the replacement of fixed class logits with an object embedding head, which formulates classification as similarity matching against prompt embeddings derived from text descriptions, visual examples, or a built-in vocabulary. To enable efficient open-vocabulary reasoning, the framework incorporates Re-Parameterizable Region-Text Alignment (RepRTA) for zero-overhead text prompting, a Semantic-Activated Visual Prompt Encoder (SAVPE) for example-guided segmentation, and Lazy Region Prompt Contrast for prompt-free inference. All prompting modalities operate within a unified object embedding space, allowing seamless switching between text-prompted, visual-prompted, and fully autonomous segmentation. Extensive experiments demonstrate consistent scaling behavior and favorable accuracy-efficiency trade-offs across model sizes in both prompted and prompt-free settings. The training strategy leverages large-scale detection and grounding datasets with multi-task optimization and remains fully compatible with the Ultralytics ecosystem for training, validation, and deployment. Overall, YOLOE-26 provides a practical and scalable solution for real-time open-vocabulary instance segmentation in dynamic, real-world environments.
State space models (SSMs) have recently emerged as an alternative to transformers due to their unique ability of modeling global relationships in text with linear complexity. However, their success in vision tasks has been limited due to their causal formulation, which is suitable for sequential text but detrimental in the spatial domain where causality breaks the inherent spatial relationships among pixels or patches. As a result, standard SSMs fail to capture local spatial coherence, often linking non-adjacent patches while ignoring neighboring ones that are visually correlated. To address these limitations, we introduce OCTOPUS , a novel architecture that preserves both global context and local spatial structure within images, while maintaining the linear complexity of SSMs. OCTOPUS performs discrete reoccurrence along eight principal orientations, going forward or backward in the horizontal, vertical, and diagonal directions, allowing effective information exchange across all spatially connected regions while maintaining independence among unrelated patches. This design enables multi-directional recurrence, capturing both global context and local spatial structure with SSM-level efficiency. In our classification and segmentation benchmarks, OCTOPUS demonstrates notable improvements in boundary preservation and region consistency, as evident from the segmentation results, while maintaining relatively better classification accuracy compared to existing V-SSM based models. These results suggest that OCTOPUS appears as a foundation method for multi-directional recurrence as a scalable and effective mechanism for building spatially aware and computationally efficient vision architectures.