Text classification is the process of categorizing text documents into predefined categories or labels.
Audio-language models have recently demonstrated strong zero-shot capabilities by leveraging natural-language supervision to classify audio events without labeled training data. Yet, their performance is highly sensitive to the wording of text prompts, with small variations leading to large fluctuations in accuracy. Prior work has mitigated this issue through prompt learning or prompt ensembling. However, these strategies either require annotated data or fail to account for the fact that some prompts may negatively impact performance. In this work, we present an entropy-guided prompt weighting approach that aims to find a robust combination of prompt contributions to maximize prediction confidence. To this end, we formulate a tailored objective function that minimizes prediction entropy to yield new prompt weights, utilizing low-entropy as a proxy for high confidence. Our approach can be applied to individual samples or a batch of audio samples, requiring no additional labels and incurring negligible computational overhead. Experiments on five audio classification datasets covering environmental, urban, and vocal sounds, demonstrate consistent gains compared to classical prompt ensembling methods in a zero-shot setting, with accuracy improvements 5-times larger across the whole benchmark.
Ancient script images often suffer from severe background noise, low contrast, and degradation caused by aging and environmental effects. In many cases, the foreground text and background exhibit similar visual characteristics, making the inscriptions difficult to read. The primary objective of image enhancement is to improve the readability of such degraded ancient images. This paper presents an image enhancement approach based on binarization and complementary preprocessing techniques for removing stains and enhancing unclear ancient text. The proposed methods are evaluated on different types of ancient scripts, including inscriptions on stone, metal plates, and historical documents. Experimental results show that the proposed approach achieves classification accuracies of 55.7%, 62%, and 65.6% for stone, metal plate, and document scripts, respectively, using the K-Nearest Neighbor (K-NN) classifier. Using the Support Vector Machine (SVM) classifier, accuracies of 53.2%, 59.5%, and 67.8% are obtained. The results demonstrate the effectiveness of the proposed enhancement method in improving the readability of ancient Marathi inscription images.
Surface electromyography (sEMG) provides a direct neural interface for decoding muscle activity and offers a promising foundation for keyboard-free text input in wearable and mixed-reality systems. Previous sEMG-to-text studies mainly focused on recognizing letters directly from sEMG signals, forming an important first step toward translating muscle activity into text. Building on this foundation, we present MyoText, a hierarchical framework that decodes sEMG signals to text through physiologically grounded intermediate stages. MyoText first classifies finger activations from multichannel sEMG using a CNN-BiLSTM-Attention model, applies ergonomic typing priors to infer letters, and reconstructs full sentences with a fine-tuned T5 transformer. This modular design mirrors the natural hierarchy of typing, linking muscle intent to language output and reducing the search space for decoding. Evaluated on 30 users from the emg2qwerty dataset, MyoText outperforms baselines by achieving 85.4% finger-classification accuracy, 5.4% character error rate (CER), and 6.5% word error rate (WER). Beyond accuracy gains, this methodology establishes a principled pathway from neuromuscular signals to text, providing a blueprint for virtual and augmented-reality typing interfaces that operate entirely without physical keyboards. By integrating ergonomic structure with transformer-based linguistic reasoning, MyoText advances the feasibility of seamless, wearable neural input for future ubiquitous computing environments.
Adapting language models to the clinical domain through continued pretraining and fine-tuning requires costly retraining for each new model generation. We propose Cross-Architecture Proxy Tuning (CAPT), a model-ensembling approach that enables training-free adaptation of state-of-the-art general-domain models using existing clinical models. CAPT supports models with disjoint vocabularies, leveraging contrastive decoding to selectively inject clinically relevant signals while preserving the general-domain model's reasoning and fluency. On six clinical classification and text-generation tasks, CAPT with a new-generation general-domain model and an older-generation clinical model consistently outperforms both models individually and state-of-the-art ensembling approaches (average +17.6% over UniTE, +41.4% over proxy tuning across tasks). Through token-level analysis and physician case studies, we demonstrate that CAPT amplifies clinically actionable language, reduces context errors, and increases clinical specificity.
Paleography is the study of ancient and historical handwriting, its key objectives include the dating of manuscripts and understanding the evolution of writing. Estimating when a document was written and tracing the development of scripts and writing styles can be aided by identifying the individual scribes who contributed to a medieval manuscript. Although digital technologies have made significant progress in this field, the general problem remains unsolved and continues to pose open challenges. ... We previously proposed an approach focused on identifying specific letters or abbreviations that characterize each writer. In that study, we considered the letter "a", as it was widely present on all pages of text and highly distinctive, according to the suggestions of expert paleographers. We used template matching techniques to detect the occurrences of the character "a" on each page and the convolutional neural network (CNN) to attribute each instance to the correct scribe. Moving from the interesting results achieved from this previous system and being aware of the limitations of the template matching technique, which requires an appropriate threshold to work, we decided to experiment in the same framework with the use of the YOLO object detection model to identify the scribe who contributed to the writing of different medieval books. We considered the fifth version of YOLO to implement the YOLO object detection model, which completely substituted the template matching and CNN used in the previous work. The experimental results demonstrate that YOLO effectively extracts a greater number of letters considered, leading to a more accurate second-stage classification. Furthermore, the YOLO confidence score provides a foundation for developing a system that applies a rejection threshold, enabling reliable writer identification even in unseen manuscripts.
Modeling fine-grained speaking styles remains challenging for language-speech representation pre-training, as existing speech-text models are typically trained with coarse captions or task-specific supervision, and scalable fine-grained style annotations are unavailable. We present FCaps, a large-scale dataset with fine-grained free-text style descriptions, encompassing 47k hours of speech and 19M fine-grained captions annotated via a novel end-to-end pipeline that directly grounds detailed captions in audio, thereby avoiding the error propagation caused by LLM-based rewriting in existing cascaded pipelines. Evaluations using LLM-as-a-judge demonstrate that our annotations surpass existing cascaded annotations in terms of correctness, coverage, and naturalness. Building on FCaps, we propose CLSP, a contrastive language-speech pre-trained model that integrates global and fine-grained supervision, enabling unified representations across multiple granularities. Extensive experiments demonstrate that CLSP learns fine-grained and multi-granular speech-text representations that perform reliably across global and fine-grained speech-text retrieval, zero-shot paralinguistic classification, and speech style similarity scoring, with strong alignment to human judgments. All resources will be made publicly available.
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks, yet their black-box nature raises concerns about transparency and faithfulness. Input attribution methods aim to highlight each input token's contributions to the model's output, but existing approaches are typically model-agnostic, and do not focus on transformer-specific architectures, leading to limited faithfulness. To address this, we propose Grad-ELLM, a gradient-based attribution method for decoder-only transformer-based LLMs. By aggregating channel importance from gradients of the output logit with respect to attention layers and spatial importance from attention maps, Grad-ELLM generates heatmaps at each generation step without requiring architectural modifications. Additionally, we introduce two faithfulneses metrics $π$-Soft-NC and $π$-Soft-NS, which are modifications of Soft-NC/NS that provide fairer comparisons by controlling the amount of information kept when perturbing the text. We evaluate Grad-ELLM on sentiment classification, question answering, and open-generation tasks using different models. Experiment results show that Grad-ELLM consistently achieves superior faithfulness than other attribution methods.
Augmenting toxic language data in a controllable and class-specific manner is crucial for improving robustness in toxicity classification, yet remains challenging due to limited supervision and distributional skew. We propose ToxiGAN, a class-aware text augmentation framework that combines adversarial generation with semantic guidance from large language models (LLMs). To address common issues in GAN-based augmentation such as mode collapse and semantic drift, ToxiGAN introduces a two-step directional training strategy and leverages LLM-generated neutral texts as semantic ballast. Unlike prior work that treats LLMs as static generators, our approach dynamically selects neutral exemplars to provide balanced guidance. Toxic samples are explicitly optimized to diverge from these exemplars, reinforcing class-specific contrastive signals. Experiments on four hate speech benchmarks show that ToxiGAN achieves the strongest average performance in both macro-F1 and hate-F1, consistently outperforming traditional and LLM-based augmentation methods. Ablation and sensitivity analyses further confirm the benefits of semantic ballast and directional training in enhancing classifier robustness.
Linear text segmentation is a long-standing problem in natural language processing (NLP), focused on dividing continuous text into coherent and semantically meaningful units. Despite its importance, the task remains challenging due to the complexity of defining topic boundaries, the variability in discourse structure, and the need to balance local coherence with global context. These difficulties hinder downstream applications such as summarization, information retrieval, and question answering. In this work, we introduce SegNSP, framing linear text segmentation as a next sentence prediction (NSP) task. Although NSP has largely been abandoned in modern pre-training, its explicit modeling of sentence-to-sentence continuity makes it a natural fit for detecting topic boundaries. We propose a label-agnostic NSP approach, which predicts whether the next sentence continues the current topic without requiring explicit topic labels, and enhance it with a segmentation-aware loss combined with harder negative sampling to better capture discourse continuity. Unlike recent proposals that leverage NSP alongside auxiliary topic classification, our approach avoids task-specific supervision. We evaluate our model against established baselines on two datasets, CitiLink-Minutes, for which we establish the first segmentation benchmark, and WikiSection. On CitiLink-Minutes, SegNSP achieves a B-$F_1$ of 0.79, closely aligning with human-annotated topic transitions, while on WikiSection it attains a B-F$_1$ of 0.65, outperforming the strongest reproducible baseline, TopSeg, by 0.17 absolute points. These results demonstrate competitive and robust performance, highlighting the effectiveness of modeling sentence-to-sentence continuity for improving segmentation quality and supporting downstream NLP applications.
Hate speech detection on social media faces challenges in both accuracy and explainability, especially for underexplored Indic languages. We propose a novel explainability-guided training framework, X-MuTeST (eXplainable Multilingual haTe Speech deTection), for hate speech detection that combines high-level semantic reasoning from large language models (LLMs) with traditional attention-enhancing techniques. We extend this research to Hindi and Telugu alongside English by providing benchmark human-annotated rationales for each word to justify the assigned class label. The X-MuTeST explainability method computes the difference between the prediction probabilities of the original text and those of unigrams, bigrams, and trigrams. Final explanations are computed as the union between LLM explanations and X-MuTeST explanations. We show that leveraging human rationales during training enhances both classification performance and explainability. Moreover, combining human rationales with our explainability method to refine the model attention yields further improvements. We evaluate explainability using Plausibility metrics such as Token-F1 and IOU-F1 and Faithfulness metrics such as Comprehensiveness and Sufficiency. By focusing on under-resourced languages, our work advances hate speech detection across diverse linguistic contexts. Our dataset includes token-level rationale annotations for 6,004 Hindi, 4,492 Telugu, and 6,334 English samples. Data and code are available on https://github.com/ziarehman30/X-MuTeST