Text classification is the process of categorizing text documents into predefined categories or labels.
Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.
People use search engines for various topics and items, from daily essentials to more aspirational and specialized objects. Therefore, search engines have taken over as peoples preferred resource. The How To prefix has become familiar and widely used in various search styles to find solutions to particular problems. This search allows people to find sequential instructions by providing detailed guidelines to accomplish specific tasks. Categorizing instructional text is also essential for task-oriented learning and creating knowledge bases. This study uses the How To articles to determine the multi-label instruction category. We have brought this work with a dataset comprising 11,121 observations from wikiHow, where each record has multiple categories. To find out the multi-label category meticulously, we employ some transformer-based deep neural architectures, such as Generalized Autoregressive Pretraining for Language Understanding (XLNet), Bidirectional Encoder Representation from Transformers (BERT), etc. In our multi-label instruction classification process, we have reckoned our proposed architectures using accuracy and macro f1-score as the performance metrics. This thorough evaluation showed us much about our strategys strengths and drawbacks. Specifically, our implementation of the XLNet architecture has demonstrated unprecedented performance, achieving an accuracy of 97.30% and micro and macro average scores of 89.02% and 93%, a noteworthy accomplishment in multi-label classification. This high level of accuracy and macro average score is a testament to the effectiveness of the XLNet architecture in our proposed InstructNet approach. By employing a multi-level strategy in our evaluation process, we have gained a more comprehensive knowledge of the effectiveness of our proposed architectures and identified areas for forthcoming improvement and refinement.
The proliferation of linguistically subtle political disinformation poses a significant challenge to automated fact-checking systems. Despite increasing emphasis on complex neural architectures, the empirical limits of text-only linguistic modeling remain underexplored. We present a systematic diagnostic evaluation of nine machine learning algorithms on the LIAR benchmark. By isolating lexical features (Bag-of-Words, TF-IDF) and semantic embeddings (GloVe), we uncover a hard "Performance Ceiling", with fine-grained classification not exceeding a Weighted F1-score of 0.32 across models. Crucially, a simple linear SVM (Accuracy: 0.624) matches the performance of pre-trained Transformers such as RoBERTa (Accuracy: 0.620), suggesting that model capacity is not the primary bottleneck. We further diagnose a massive "Generalization Gap" in tree-based ensembles, which achieve more than 99% training accuracy but collapse to approximately 25% on test data, indicating reliance on lexical memorization rather than semantic inference. Synthetic data augmentation via SMOTE yields no meaningful gains, confirming that the limitation is semantic (feature ambiguity) rather than distributional. These findings indicate that for political fact-checking, increasing model complexity without incorporating external knowledge yields diminishing returns.
This tutorial (https://tum-nlp.github.io/low-resource-tutorial) is designed for NLP practitioners, researchers, and developers working with multilingual and low-resource languages who seek to create more equitable and socially impactful language technologies. Participants will walk away with a practical toolkit for building end-to-end NLP pipelines for underrepresented languages -- from data collection and web crawling to parallel sentence mining, machine translation, and downstream applications such as text classification and multimodal reasoning. The tutorial presents strategies for tackling the challenges of data scarcity and cultural variance, offering hands-on methods and modeling frameworks. We will focus on fair, reproducible, and community-informed development approaches, grounded in real-world scenarios. We will showcase a diverse set of use cases covering over 10 languages from different language families and geopolitical contexts, including both digitally resource-rich and severely underrepresented languages.
Human action recognition models often rely on background cues rather than human movement and pose to make predictions, a behavior known as background bias. We present a systematic analysis of background bias across classification models, contrastive text-image pretrained models, and Video Large Language Models (VLLM) and find that all exhibit a strong tendency to default to background reasoning. Next, we propose mitigation strategies for classification models and show that incorporating segmented human input effectively decreases background bias by 3.78%. Finally, we explore manual and automated prompt tuning for VLLMs, demonstrating that prompt design can steer predictions towards human-focused reasoning by 9.85%.
Traditional Convolutional Neural Networks have been successful in capturing local, position-invariant features in text, but their capacity to model complex transformation within language can be further explored. In this work, we explore a novel approach by integrating Lie Convolutions into Convolutional-based sentence classifiers, inspired by the ability of Lie group operations to capture complex, non-Euclidean symmetries. Our proposed models SCLie and DPCLie empirically outperform traditional Convolutional-based sentence classifiers, suggesting that Lie-based models relatively improve the accuracy by capturing transformations not commonly associated with language. Our findings motivate more exploration of new paradigms in language modeling.
The human hand is our primary interface to the physical world, yet egocentric perception rarely knows when, where, or how forcefully it makes contact. Robust wearable tactile sensors are scarce, and no existing in-the-wild datasets align first-person video with full-hand touch. To bridge the gap between visual perception and physical interaction, we present OpenTouch, the first in-the-wild egocentric full-hand tactile dataset, containing 5.1 hours of synchronized video-touch-pose data and 2,900 curated clips with detailed text annotations. Using OpenTouch, we introduce retrieval and classification benchmarks that probe how touch grounds perception and action. We show that tactile signals provide a compact yet powerful cue for grasp understanding, strengthen cross-modal alignment, and can be reliably retrieved from in-the-wild video queries. By releasing this annotated vision-touch-pose dataset and benchmark, we aim to advance multimodal egocentric perception, embodied learning, and contact-rich robotic manipulation.
Despite the impressive zero-shot capabilities of Vision-Language Models (VLMs), they often struggle in downstream tasks with distribution shifts from the pre-training data. Few-Shot Adaptation (FSA-VLM) has emerged as a key solution, typically using Parameter-Efficient Fine-Tuning (PEFT) to adapt models with minimal data. However, these PEFT methods are constrained by their reliance on fixed, handcrafted prompts, which are often insufficient to understand the semantics of classes. While some studies have proposed leveraging image-induced prompts to provide additional clues for classification, they introduce prohibitive computational overhead at inference. Therefore, we introduce Auxiliary Descriptive Knowledge (ADK), a novel framework that efficiently enriches text representations without compromising efficiency. ADK first leverages a Large Language Model to generate a rich set of descriptive prompts for each class offline. These pre-computed features are then deployed in two ways: (1) as Compositional Knowledge, an averaged representation that provides rich semantics, especially beneficial when class names are ambiguous or unfamiliar to the VLM; and (2) as Instance-Specific Knowledge, where a lightweight, non-parametric attention mechanism dynamically selects the most relevant descriptions for a given image. This approach provides two additional types of knowledge alongside the handcrafted prompt, thereby facilitating category distinction across various domains. Also, ADK acts as a parameter-free, plug-and-play component that enhances existing PEFT methods. Extensive experiments demonstrate that ADK consistently boosts the performance of multiple PEFT baselines, setting a new state-of-the-art across various scenarios.
We explore efficient strategies to fine-tune decoder-only Large Language Models (LLMs) for downstream text classification under resource constraints. Two approaches are investigated: (1) attaching a classification head to a pre-trained causal LLM and fine-tuning on the task (using the LLM's final token embedding as a sequence representation), and (2) instruction-tuning the LLM in a prompt->response format for classification. To enable single-GPU fine-tuning of models up to 8B parameters, we combine 4-bit model quantization with Low-Rank Adaptation (LoRA) for parameter-efficient training. Experiments on two datasets - a proprietary single-label dataset and the public WIPO-Alpha patent dataset (extreme multi-label classification) - show that the embedding-based method significantly outperforms the instruction-tuned method in F1-score, and is very competitive with - even surpassing - fine-tuned domain-specific models (e.g. BERT) on the same tasks. These results demonstrate that directly leveraging the internal representations of causal LLMs, along with efficient fine-tuning techniques, yields impressive classification performance under limited computational resources. We discuss the advantages of each approach while outlining practical guidelines and future directions for optimizing LLM fine-tuning in classification scenarios.
Extracting structured information from zeolite synthesis experimental procedures is critical for materials discovery, yet existing methods have not systematically evaluated Large Language Models (LLMs) for this domain-specific task. This work addresses a fundamental question: what is the efficacy of different prompting strategies when applying LLMs to scientific information extraction? We focus on four key subtasks: event type classification (identifying synthesis steps), trigger text identification (locating event mentions), argument role extraction (recognizing parameter types), and argument text extraction (extracting parameter values). We evaluate four prompting strategies - zero-shot, few-shot, event-specific, and reflection-based - across six state-of-the-art LLMs (Gemma-3-12b-it, GPT-5-mini, O4-mini, Claude-Haiku-3.5, DeepSeek reasoning and non-reasoning) using the ZSEE dataset of 1,530 annotated sentences. Results demonstrate strong performance on event type classification (80-90\% F1) but modest performance on fine-grained extraction tasks, particularly argument role and argument text extraction (50-65\% F1). GPT-5-mini exhibits extreme prompt sensitivity with 11-79\% F1 variation. Notably, advanced prompting strategies provide minimal improvements over zero-shot approaches, revealing fundamental architectural limitations. Error analysis identifies systematic hallucination, over-generalization, and inability to capture synthesis-specific nuances. Our findings demonstrate that while LLMs achieve high-level understanding, precise extraction of experimental parameters requires domain-adapted models, providing quantitative benchmarks for scientific information extraction.