Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Glass surface ubiquitous in both daily life and professional environments presents a potential threat to vision-based systems, such as robot and drone navigation. To solve this challenge, most recent studies have shown significant interest in Video Glass Surface Detection (VGSD). We observe that objects in the reflection (or transmission) layer appear farther from the glass surfaces. Consequently, in video motion scenarios, the notable reflected (or transmitted) objects on the glass surface move slower than objects in non-glass regions within the same spatial plane, and this motion inconsistency can effectively reveal the presence of glass surfaces. Based on this observation, we propose a novel network, named MVGD-Net, for detecting glass surfaces in videos by leveraging motion inconsistency cues. Our MVGD-Net features three novel modules: the Cross-scale Multimodal Fusion Module (CMFM) that integrates extracted spatial features and estimated optical flow maps, the History Guided Attention Module (HGAM) and Temporal Cross Attention Module (TCAM), both of which further enhances temporal features. A Temporal-Spatial Decoder (TSD) is also introduced to fuse the spatial and temporal features for generating the glass region mask. Furthermore, for learning our network, we also propose a large-scale dataset, which comprises 312 diverse glass scenarios with a total of 19,268 frames. Extensive experiments demonstrate that our MVGD-Net outperforms relevant state-of-the-art methods.
Achieving bound consistency for the no-overlap constraint is known to be NP-complete. Therefore, several polynomial-time tightening techniques, such as edge finding, not-first-not-last reasoning, and energetic reasoning, have been introduced for this constraint. In this work, we derive the first bound-consistent algorithm for the no-overlap constraint. By building on the no-overlap MDD defined by Ciré and van Hoeve, we extract bounds of the time window of the jobs, allowing us to tighten start and end times in time polynomial in the number of nodes of the MDD. Similarly, to bound the size and time-complexity, we limit the width of the MDD to a threshold, creating a relaxed MDD that can also be used to relax the bound-consistent filtering. Through experiments on a sequencing problem with time windows and a just-in-time objective ($1 \mid r_j, d_j, \bar{d}_j \mid \sum E_j + \sum T_j$), we observe that the proposed filtering, even with a threshold on the width, achieves a stronger reduction in the number of nodes visited in the search tree compared to the previously proposed precedence-detection algorithm of Ciré and van Hoeve. The new filtering also appears to be complementary to classical propagation methods for the no-overlap constraint, allowing a substantial reduction in both the number of nodes and the solving time on several instances.
In this research, we analyze the performance of Membership Inference Tests (MINT), focusing on determining whether given data were utilized during the training phase, specifically in the domain of object recognition. Within the area of object recognition, we propose and develop architectures tailored for MINT models. These architectures aim to optimize performance and efficiency in data utilization, offering a tailored solution to tackle the complexities inherent in the object recognition domain. We conducted experiments involving an object detection model, an embedding extractor, and a MINT module. These experiments were performed in three public databases, totaling over 174K images. The proposed architecture leverages convolutional layers to capture and model the activation patterns present in the data during the training process. Through our analysis, we are able to identify given data used for testing and training, achieving precision rates ranging between 70% and 80%, contingent upon the depth of the detection module layer chosen for input to the MINT module. Additionally, our studies entail an analysis of the factors influencing the MINT Module, delving into the contributing elements behind more transparent training processes.
Video generation models have recently achieved impressive visual fidelity and temporal coherence. Yet, they continue to struggle with complex, non-rigid motions, especially when synthesizing humans performing dynamic actions such as sports, dance, etc. Generated videos often exhibit missing or extra limbs, distorted poses, or physically implausible actions. In this work, we propose a remarkably simple reward model, HuDA, to quantify and improve the human motion in generated videos. HuDA integrates human detection confidence for appearance quality, and a temporal prompt alignment score to capture motion realism. We show this simple reward function that leverages off-the-shelf models without any additional training, outperforms specialized models finetuned with manually annotated data. Using HuDA for Group Reward Policy Optimization (GRPO) post-training of video models, we significantly enhance video generation, especially when generating complex human motions, outperforming state-of-the-art models like Wan 2.1, with win-rate of 73%. Finally, we demonstrate that HuDA improves generation quality beyond just humans, for instance, significantly improving generation of animal videos and human-object interactions.
In remote sensing images, complex backgrounds, weak object signals, and small object scales make accurate detection particularly challenging, especially under low-quality imaging conditions. A common strategy is to integrate single-image super-resolution (SR) before detection; however, such serial pipelines often suffer from misaligned optimization objectives, feature redundancy, and a lack of effective interaction between SR and detection. To address these issues, we propose a Saliency-Driven multi-task Collaborative Network (SDCoNet) that couples SR and detection through implicit feature sharing while preserving task specificity. SDCoNet employs the swin transformer-based shared encoder, where hierarchical window-shifted self-attention supports cross-task feature collaboration and adaptively balances the trade-off between texture refinement and semantic representation. In addition, a multi-scale saliency prediction module produces importance scores to select key tokens, enabling focused attention on weak object regions, suppression of background clutter, and suppression of adverse features introduced by multi-task coupling. Furthermore, a gradient routing strategy is introduced to mitigate optimization conflicts. It first stabilizes detection semantics and subsequently routes SR gradients along a detection-oriented direction, enabling the framework to guide the SR branch to generate high-frequency details that are explicitly beneficial for detection. Experiments on public datasets, including NWPU VHR-10-Split, DOTAv1.5-Split, and HRSSD-Split, demonstrate that the proposed method, while maintaining competitive computational efficiency, significantly outperforms existing mainstream algorithms in small object detection on low-quality remote sensing images. Our code is available at https://github.com/qiruo-ya/SDCoNet.
Driver distraction remains a leading contributor to motor vehicle crashes, necessitating rigorous evaluation of new in-vehicle technologies. This study assessed the visual and cognitive demands associated with an advanced Large Language Model (LLM) conversational agent (Gemini Live) during on-road driving, comparing it against handsfree phone calls, visual turn-by-turn guidance (low load baseline), and the Operation Span (OSPAN) task (high load anchor). Thirty-two licensed drivers completed five secondary tasks while visual and cognitive demands were measured using the Detection Response Task (DRT) for cognitive load, eye-tracking for visual attention, and subjective workload ratings. Results indicated that Gemini Live interactions (both single-turn and multi-turn) and hands-free phone calls shared similar levels of cognitive load, between that of visual turn-by-turn guidance and OSPAN. Exploratory analysis showed that cognitive load remained stable across extended multi-turn conversations. All tasks maintained mean glance durations well below the well-established 2-second safety threshold, confirming low visual demand. Furthermore, drivers consistently dedicated longer glances to the roadway between brief off-road glances toward the device during task completion, particularly during voice-based interactions, rendering longer total-eyes-off-road time findings less consequential. Subjective ratings mirrored objective data, with participants reporting low effort, demands, and perceived distraction for Gemini Live. These findings demonstrate that advanced LLM conversational agents, when implemented via voice interfaces, impose cognitive and visual demands comparable to established, low-risk hands-free benchmarks, supporting their safe deployment in the driving environment.
In this paper, the CD-TWINSAFE is introduced, a V2I-based digital twin for Autonomous Vehicles. The proposed architecture is composed of two stacks running simultaneously, an on-board driving stack that includes a stereo camera for scene understanding, and a digital twin stack that runs an Unreal Engine 5 replica of the scene viewed by the camera as well as returning safety alerts to the cockpit. The on-board stack is implemented on the vehicle side including 2 main autonomous modules; localization and perception. The position and orientation of the ego vehicle are obtained using on-board sensors. Furthermore, the perception module is responsible for processing 20-fps images from stereo camera and understands the scene through two complementary pipelines. The pipeline are working on object detection and feature extraction including object velocity, yaw and the safety metrics time-to-collision and time-headway. The collected data form the driving stack are sent to the infrastructure side through the ROS-enabled architecture in the form of custom ROS2 messages and sent over UDP links that ride a 4G modem for V2I communication. The environment is monitored via the digital twin through the shared messages which update the information of the spawned ego vehicle and detected objects based on the real-time localization and perception data. Several tests with different driving scenarios to confirm the validity and real-time response of the proposed architecture.
In speech machine learning, neural network models are typically designed by choosing an architecture with fixed layer sizes and structure. These models are then trained to maximize performance on metrics aligned with the task's objective. While the overall architecture is usually guided by prior knowledge of the task, the sizes of individual layers are often chosen heuristically. However, this approach does not guarantee an optimal trade-off between performance and computational complexity; consequently, post hoc methods such as weight quantization or model pruning are typically employed to reduce computational cost. This occurs because stochastic gradient descent (SGD) methods can only optimize differentiable functions, while factors influencing computational complexity, such as layer sizes and floating-point operations per second (FLOP/s), are non-differentiable and require modifying the model structure during training. We propose a reparameterization technique based on feature noise injection that enables joint optimization of performance and computational complexity during training using SGD-based methods. Unlike traditional pruning methods, our approach allows the model size to be dynamically optimized for a target performance-complexity trade-off, without relying on heuristic criteria to select which weights or structures to remove. We demonstrate the effectiveness of our method through three case studies, including a synthetic example and two practical real-world applications: voice activity detection and audio anti-spoofing. The code related to our work is publicly available to encourage further research.
Intelligent surveillance systems often handle perceptual tasks such as object detection, facial recognition, and emotion analysis independently, but they lack a unified, adaptive runtime scheduler that dynamically allocates computational resources based on contextual triggers. This limits their holistic understanding and efficiency on low-power edge devices. To address this, we present a real-time multi-modal vision framework that integrates object detection, owner-specific face recognition, and emotion detection into a unified pipeline deployed on a Raspberry Pi 5 edge platform. The core of our system is an adaptive scheduling mechanism that reduces computational load by 65\% compared to continuous processing by selectively activating modules such as, YOLOv8n for object detection, a custom FaceNet-based embedding system for facial recognition, and DeepFace's CNN for emotion classification. Experimental results demonstrate the system's efficacy, with the object detection module achieving an Average Precision (AP) of 0.861, facial recognition attaining 88\% accuracy, and emotion detection showing strong discriminatory power (AUC up to 0.97 for specific emotions), while operating at 5.6 frames per second. Our work demonstrates that context-aware scheduling is the key to unlocking complex multi-modal AI on cost-effective edge hardware, making intelligent perception more accessible and privacy-preserving.
This paper presents a novel cross-modal visuo-tactile perception framework for the 3D shape reconstruction of deformable linear objects (DLOs), with a specific focus on cables subject to severe visual occlusions. Unlike existing methods relying predominantly on vision, whose performance degrades under varying illumination, background clutter, or partial visibility, the proposed approach integrates foundation-model-based visual perception with adaptive tactile exploration. The visual pipeline exploits SAM for instance segmentation and Florence for semantic refinement, followed by skeletonization, endpoint detection, and point-cloud extraction. Occluded cable segments are autonomously identified and explored with a tactile sensor, which provides local point clouds that are merged with the visual data through Euclidean clustering and topology-preserving fusion. A B-spline interpolation driven by endpoint-guided point sorting yields a smooth and complete reconstruction of the cable shape. Experimental validation using a robotic manipulator equipped with an RGB-D camera and a tactile pad demonstrates that the proposed framework accurately reconstructs both simple and highly curved single or multiple cable configurations, even when large portions are occluded. These results highlight the potential of foundation-model-enhanced cross-modal perception for advancing robotic manipulation of deformable objects.