Autonomous cars are self-driving vehicles that use artificial intelligence (AI) and sensors to navigate and operate without human intervention, using high-resolution cameras and lidars that detect what happens in the car's immediate surroundings. They have the potential to revolutionize transportation by improving safety, efficiency, and accessibility.




Developing efficient traffic models is essential for optimizing transportation systems, yet current approaches remain time-intensive and susceptible to human errors due to their reliance on manual processes. Traditional workflows involve exhaustive literature reviews, formula optimization, and iterative testing, leading to inefficiencies in research. In response, we introduce the Traffic Research Agent (TR-Agent), an AI-driven system designed to autonomously develop and refine traffic models through an iterative, closed-loop process. Specifically, we divide the research pipeline into four key stages: idea generation, theory formulation, theory evaluation, and iterative optimization; and construct TR-Agent with four corresponding modules: Idea Generator, Code Generator, Evaluator, and Analyzer. Working in synergy, these modules retrieve knowledge from external resources, generate novel ideas, implement and debug models, and finally assess them on the evaluation datasets. Furthermore, the system continuously refines these models based on iterative feedback, enhancing research efficiency and model performance. Experimental results demonstrate that TR-Agent achieves significant performance improvements across multiple traffic models, including the Intelligent Driver Model (IDM) for car following, the MOBIL lane-changing model, and the Lighthill-Whitham-Richards (LWR) traffic flow model. Additionally, TR-Agent provides detailed explanations for its optimizations, allowing researchers to verify and build upon its improvements easily. This flexibility makes the framework a powerful tool for researchers in transportation and beyond. To further support research and collaboration, we have open-sourced both the code and data used in our experiments, facilitating broader access and enabling continued advancements in the field.
Sensor calibration is crucial for autonomous driving, providing the basis for accurate localization and consistent data fusion. Enabling the use of high-accuracy GNSS sensors, this work focuses on the antenna lever arm calibration. We propose a globally optimal multi-antenna lever arm calibration approach based on motion measurements. For this, we derive an optimization method that further allows the integration of a-priori knowledge. Globally optimal solutions are obtained by leveraging the Lagrangian dual problem and a primal recovery strategy. Generally, motion-based calibration for autonomous vehicles is known to be difficult due to cars' predominantly planar motion. Therefore, we first describe the motion requirements for a unique solution and then propose a planar motion extension to overcome this issue and enable a calibration based on the restricted motion of autonomous vehicles. Last we present and discuss the results of our thorough evaluation. Using simulated and augmented real-world data, we achieve accurate calibration results and fast run times that allow online deployment.




As autonomous vehicle technology advances, the precise assessment of safety in complex traffic scenarios becomes crucial, especially in mixed-vehicle environments where human perception of safety must be taken into account. This paper presents a framework designed for assessing traffic safety in multi-vehicle situations, facilitating the simultaneous utilization of diverse objective safety metrics. Additionally, it allows the integration of subjective perception of safety by adjusting model parameters. The framework was applied to evaluate various model configurations in car-following scenarios on a highway, utilizing naturalistic driving datasets. The evaluation of the model showed an outstanding performance, particularly when integrating multiple objective safety measures. Furthermore, the performance was significantly enhanced when considering all surrounding vehicles.




This paper presents a study on autonomous robot navigation, focusing on three key behaviors: Odometry, Target Tracking, and Obstacle Avoidance. Each behavior is described in detail, along with experimental setups for simulated and real-world environments. Odometry utilizes wheel encoder data for precise navigation along predefined paths, validated through experiments with a Pioneer robot. Target Tracking employs vision-based techniques for pursuing designated targets while avoiding obstacles, demonstrated on the same platform. Obstacle Avoidance utilizes ultrasonic sensors to navigate cluttered environments safely, validated in both simulated and real-world scenarios. Additionally, the paper extends the project to include an Elegoo robot car, leveraging its features for enhanced experimentation. Through advanced algorithms and experimental validations, this study provides insights into developing robust navigation systems for autonomous robots.


Automotive radar emerges as a crucial sensor for autonomous vehicle perception. As more cars are equipped radars, radar interference is an unavoidable challenge. Unlike conventional approaches such as interference mitigation and interference-avoiding technologies, this paper introduces an innovative collaborative sensing scheme with multiple automotive radars that exploits constructive interference. Through collaborative sensing, our method optimally aligns cross-path interference signals from other radars with another radar's self-echo signals, thereby significantly augmenting its target detection capabilities. This approach alleviates the need for extensive raw data sharing between collaborating radars. Instead, only an optimized weighting matrix needs to be exchanged between the radars. This approach considerably decreases the data bandwidth requirements for the wireless channel, making it a more feasible and practical solution for automotive radar collaboration. Numerical results demonstrate the effectiveness of the constructive interference approach for enhanced object detection capability.
Trajectory planners of autonomous vehicles usually rely on physical models to predict the vehicle behavior. However, despite their suitability, physical models have some shortcomings. On the one hand, simple models suffer from larger model errors and more restrictive assumptions. On the other hand, complex models are computationally more demanding and depend on environmental and operational parameters. In each case, the drawbacks can be associated to a certain degree to the physical modeling of the yaw rate dynamics. Therefore, this paper investigates the yaw rate prediction based on conditional neural processes (CNP), a data-driven meta-learning approach, to simultaneously achieve low errors, adequate complexity and robustness to varying parameters. Thus, physical models can be enhanced in a targeted manner to provide accurate and computationally efficient predictions to enable safe planning in autonomous vehicles. High fidelity simulations for a variety of driving scenarios and different types of cars show that CNP makes it possible to employ and transfer knowledge about the yaw rate based on current driving dynamics in a human-like manner, yielding robustness against changing environmental and operational conditions.




Bird's Eye View (BEV) map prediction is essential for downstream autonomous driving tasks like trajectory prediction. In the past, this was accomplished through the use of a sophisticated sensor configuration that captured a surround view from multiple cameras. However, in large-scale production, cost efficiency is an optimization goal, so that using fewer cameras becomes more relevant. But the consequence of fewer input images correlates with a performance drop. This raises the problem of developing a BEV perception model that provides a sufficient performance on a low-cost sensor setup. Although, primarily relevant for inference time on production cars, this cost restriction is less problematic on a test vehicle during training. Therefore, the objective of our approach is to reduce the aforementioned performance drop as much as possible using a modern multi-camera surround view model reduced for single-camera inference. The approach includes three features, a modern masking technique, a cyclic Learning Rate (LR) schedule, and a feature reconstruction loss for supervising the transition from six-camera inputs to one-camera input during training. Our method outperforms versions trained strictly with one camera or strictly with six-camera surround view for single-camera inference resulting in reduced hallucination and better quality of the BEV map.




The primary goal of traffic accident anticipation is to foresee potential accidents in real time using dashcam videos, a task that is pivotal for enhancing the safety and reliability of autonomous driving technologies. In this study, we introduce an innovative framework, AccNet, which significantly advances the prediction capabilities beyond the current state-of-the-art (SOTA) 2D-based methods by incorporating monocular depth cues for sophisticated 3D scene modeling. Addressing the prevalent challenge of skewed data distribution in traffic accident datasets, we propose the Binary Adaptive Loss for Early Anticipation (BA-LEA). This novel loss function, together with a multi-task learning strategy, shifts the focus of the predictive model towards the critical moments preceding an accident. {We rigorously evaluate the performance of our framework on three benchmark datasets--Dashcam Accident Dataset (DAD), Car Crash Dataset (CCD), and AnAn Accident Detection (A3D), and DADA-2000 Dataset--demonstrating its superior predictive accuracy through key metrics such as Average Precision (AP) and mean Time-To-Accident (mTTA).




Vehicle trajectory prediction is crucial for advancing autonomous driving and advanced driver assistance systems (ADAS), enhancing road safety and traffic efficiency. While traditional methods have laid foundational work, modern deep learning techniques, particularly transformer-based models and generative approaches, have significantly improved prediction accuracy by capturing complex and non-linear patterns in vehicle motion and traffic interactions. However, these models often overlook the detailed car-following behaviors and inter-vehicle interactions essential for real-world driving scenarios. This study introduces a Cross-Attention Transformer Enhanced Conditional Diffusion Model (Crossfusor) specifically designed for car-following trajectory prediction. Crossfusor integrates detailed inter-vehicular interactions and car-following dynamics into a robust diffusion framework, improving both the accuracy and realism of predicted trajectories. The model leverages a novel temporal feature encoding framework combining GRU, location-based attention mechanisms, and Fourier embedding to capture historical vehicle dynamics. It employs noise scaled by these encoded historical features in the forward diffusion process, and uses a cross-attention transformer to model intricate inter-vehicle dependencies in the reverse denoising process. Experimental results on the NGSIM dataset demonstrate that Crossfusor outperforms state-of-the-art models, particularly in long-term predictions, showcasing its potential for enhancing the predictive capabilities of autonomous driving systems.
Maps are essential for diverse applications, such as vehicle navigation and autonomous robotics. Both require spatial models for effective route planning and localization. This paper addresses the challenge of road graph construction for autonomous vehicles. Despite recent advances, creating a road graph remains labor-intensive and has yet to achieve full automation. The goal of this paper is to generate such graphs automatically and accurately. Modern cars are equipped with onboard sensors used for today's advanced driver assistance systems like lane keeping. We propose using global navigation satellite system (GNSS) traces and basic image data acquired from these standard sensors in consumer vehicles to estimate road-level maps with minimal effort. We exploit the spatial information in the data by framing the problem as a road centerline semantic segmentation task using a convolutional neural network. We also utilize the data's time series nature to refine the neural network's output by using map matching. We implemented and evaluated our method using a fleet of real consumer vehicles, only using the deployed onboard sensors. Our evaluation demonstrates that our approach not only matches existing methods on simpler road configurations but also significantly outperforms them on more complex road geometries and topologies. This work received the 2023 Woven by Toyota Invention Award.