Information extraction is the process of automatically extracting structured information from unstructured text data.
The user of Engineering Manuals (EM) finds it difficult to read EM s because they are long, have a dense format which includes written documents, step by step procedures, and standard parameter lists for engineering equipment. Off the shelf transformers, especially compact ones, treat this material as a flat stream of tokens. This approach leads to confident but incorrect numeric answers and forces the models to memorize separate facts inefficiently. SMART (Structured Memory and Reasoning Transformer) offers a different and practical solution to the above problem. SMART structures its processing by using a hierarchical approach, and is based upon three main job categories (1) A syntax-aware Fact Extractor (Grammarian) Tree LSTM which extracts facts as subject relation object relations from EM sentences (2) A compact indexed memory MANN (Memory Augmented Neural Network) that indexes these Rational Subject Relation Objects as 384 dimensional vectors that are associated with the source of the information, and (3) A 6 layer Transformer that learns to fuse the previously retrieved facts into its generated response. The entire SMART model utilizes 45.51M parameters, which is 64% less than GPT-2 (124M) and 69% less than BERT (133M), and it achieves a 21.3% higher accuracy than GPT-2, indicating that SMART fits the data better with the least amount of processing requirements. SMART employs dual modes of inference an indexed fast path for known documents (sub-second answer times) and an indexed dynamic path assisted by RAGs for new uploads (FAISS Top 20 results with memory severed at 64 slots). In real world deployment, this framework leads to more well supported results with reduced hallucinations than comparable small transformer models.
The parallel advances in language modeling and speech representation learning have raised the prospect of learning language directly from speech without textual intermediates. This requires extracting semantic representations directly from speech. Our contributions are threefold. First, we introduce SpidR, a self-supervised speech representation model that efficiently learns representations with highly accessible phonetic information, which makes it particularly suited for textless spoken language modeling. It is trained on raw waveforms using a masked prediction objective combined with self-distillation and online clustering. The intermediate layers of the student model learn to predict assignments derived from the teacher's intermediate layers. This learning objective stabilizes the online clustering procedure compared to previous approaches, resulting in higher quality codebooks. SpidR outperforms wav2vec 2.0, HuBERT, WavLM, and DinoSR on downstream language modeling benchmarks (sWUGGY, sBLIMP, tSC). Second, we systematically evaluate across models and layers the correlation between speech unit quality (ABX, PNMI) and language modeling performance, validating these metrics as reliable proxies. Finally, SpidR significantly reduces pretraining time compared to HuBERT, requiring only one day of pretraining on 16 GPUs, instead of a week. This speedup is enabled by the pretraining method and an efficient codebase, which allows faster iteration and easier experimentation. We open-source the training code and model checkpoints at https://github.com/facebookresearch/spidr.
Skilled human interviewers can extract valuable information from experts. This raises a fundamental question: what makes some questions more effective than others? To address this, a quantitative evaluation of question-generation models is essential. Video question generation (VQG) is a topic for video question answering (VideoQA), where questions are generated for given answers. Their evaluation typically focuses on the ability to answer questions, rather than the quality of generated questions. In contrast, we focus on the question quality in eliciting unseen knowledge from human experts. For a continuous improvement of VQG models, we propose a protocol that evaluates the ability by simulating question-answering communication with experts using a question-to-answer retrieval. We obtain the retriever by constructing a novel dataset, EgoExoAsk, which comprises 27,666 QA pairs generated from Ego-Exo4D's expert commentary annotation. The EgoExoAsk training set is used to obtain the retriever, and the benchmark is constructed on the validation set with Ego-Exo4D video segments. Experimental results demonstrate our metric reasonably aligns with question generation settings: models accessing richer context are evaluated better, supporting that our protocol works as intended. The EgoExoAsk dataset is available in https://github.com/omron-sinicx/VQG4ExpertKnowledge .




This paper tackles the problem of estimating the relative position, orientation, and velocity between a UAV and a planar platform undergoing arbitrary 3D motion during approach and landing. The estimation relies on measurements from Inertial Measurement Units (IMUs) mounted on both systems, assuming there is a suitable communication channel to exchange data, together with visual information provided by an onboard monocular camera, from which the bearing (line-of-sight direction) to the platform's center and the normal vector of its planar surface are extracted. We propose a cascade observer with a complementary filter on SO(3) to reconstruct the relative attitude, followed by a linear Riccati observer for relative position and velocity estimation. Convergence of both observers is established under persistently exciting conditions, and the cascade is shown to be almost globally asymptotically and locally exponentially stable. We further extend the design to the case where the platform's rotation is restricted to its normal axis and show that its measured linear acceleration can be exploited to recover the remaining unobservable rotation angle. A sufficient condition to ensure local exponential convergence in this setting is provided. The performance of the proposed observers is validated through extensive simulations.
Target speaker extraction (TSE) aims to isolate a desired speaker's voice from a multi-speaker mixture using auxiliary information such as a reference utterance. Although recent advances in diffusion and flow-matching models have improved TSE performance, these methods typically require multi-step sampling, which limits their practicality in low-latency settings. In this work, we propose MeanFlow-TSE, a one-step generative TSE framework trained with mean-flow objectives, enabling fast and high-quality generation without iterative refinement. Building on the AD-FlowTSE paradigm, our method defines a flow between the background and target source that is governed by the mixing ratio (MR). Experiments on the Libri2Mix corpus show that our approach outperforms existing diffusion- and flow-matching-based TSE models in separation quality and perceptual metrics while requiring only a single inference step. These results demonstrate that mean-flow-guided one-step generation offers an effective and efficient alternative for real-time target speaker extraction. Code is available at https://github.com/rikishimizu/MeanFlow-TSE.




Channel prediction is a key technology for improving the performance of various functions such as precoding, adaptive modulation, and resource allocation in MIMO-OFDM systems. Especially in high-mobility scenarios with fast time-varying channels, it is crucial for resisting channel aging and ensuring communication quality. However, existing methods suffer from high complexity and the inability to accurately model the temporal variations of channels. To address this issue, this paper proposes CPMamba -- an efficient channel prediction framework based on the selective state space model. The proposed CPMamba architecture extracts features from historical channel state information (CSI) using a specifically designed feature extraction and embedding network and employs stacked residual Mamba modules for temporal modeling. By leveraging an input-dependent selective mechanism to dynamically adjust state transitions, it can effectively capture the long-range dependencies between the CSIs while maintaining a linear computational complexity. Simulation results under the 3GPP standard channel model demonstrate that CPMamba achieves state-of-the-art prediction accuracy across all scenarios, along with superior generalization and robustness. Compared to existing baseline models, CPMamba reduces the number of parameters by approximately 50 percent while achieving comparable or better performance, thereby significantly lowering the barrier for practical deployment.
Graph Neural Networks (GNNs) have demonstrated remarkable efficacy in handling graph-structured data; however, they exhibit failures after deployment, which can cause severe consequences. Hence, conducting thorough testing before deployment becomes imperative to ensure the reliability of GNNs. However, thorough testing requires numerous manually annotated test data. To mitigate the annotation cost, strategically prioritizing and labeling high-quality unlabeled inputs for testing becomes crucial, which facilitates uncovering more model failures with a limited labeling budget. Unfortunately, existing test input prioritization techniques either overlook the valuable information contained in graph structures or are overly reliant on attributes extracted from the target model, i.e., model-aware attributes, whose quality can vary significantly. To address these issues, we propose a novel test input prioritization framework, named GraphRank, for GNNs. GraphRank introduces model-agnostic attributes to compensate for the limitations of the model-aware ones. It also leverages the graph structure information to aggregate attributes from neighboring nodes, thereby enhancing the model-aware and model-agnostic attributes. Furthermore, GraphRank combines the above attributes with a binary classifier, using it as a ranking model to prioritize inputs. This classifier undergoes iterative training, which enables it to learn from each round's feedback and improve its performance accordingly. Extensive experiments demonstrate GraphRank's superiority over existing techniques.
In today's information-driven world, access to scientific publications has become increasingly easy. At the same time, filtering through the massive volume of available research has become more challenging than ever. Graph Neural Networks (GNNs) and graph attention mechanisms have shown strong effectiveness in searching large-scale information databases, particularly when combined with modern large language models. In this paper, we propose an Attention-Based Subgraph Retriever, a GNN-as-retriever model that applies attention-based pruning to extract a refined subgraph, which is then passed to a large language model for advanced knowledge reasoning.
Time-series forecasting in real-world applications such as finance and energy often faces challenges due to limited training data and complex, noisy temporal dynamics. Existing deep forecasting models typically supervise predictions using full-length temporal windows, which include substantial high-frequency noise and obscure long-term trends. Moreover, auxiliary variables containing rich domain-specific information are often underutilized, especially in few-shot settings. To address these challenges, we propose LoFT-LLM, a frequency-aware forecasting pipeline that integrates low-frequency learning with semantic calibration via a large language model (LLM). Firstly, a Patch Low-Frequency forecasting Module (PLFM) extracts stable low-frequency trends from localized spectral patches. Secondly, a residual learner then models high-frequency variations. Finally, a fine-tuned LLM refines the predictions by incorporating auxiliary context and domain knowledge through structured natural language prompts. Extensive experiments on financial and energy datasets demonstrate that LoFT-LLM significantly outperforms strong baselines under both full-data and few-shot regimes, delivering superior accuracy, robustness, and interpretability.
Class imbalance is a common challenge in machine learning and data mining, often leading to suboptimal performance in classifiers. While deep learning excels in feature extraction, its performance still deteriorates under imbalanced data. In this work, we propose a novel activation function, named OGAB, designed to alleviate class imbalance in deep learning classifiers. OGAB incorporates orthogonality and group-aware bias learning to enhance feature distinguishability in imbalanced scenarios without explicitly requiring label information. Our key insight is that activation functions can be used to introduce strong inductive biases that can address complex data challenges beyond traditional non-linearity. Our work demonstrates that orthogonal transformations can preserve information about minority classes by maintaining feature independence, thereby preventing the dominance of majority classes in the embedding space. Further, the proposed group-aware bias mechanism automatically identifies data clusters and adjusts embeddings to enhance class separability without the need for explicit supervision. Unlike existing approaches that address class imbalance through preprocessing data modifications or post-processing corrections, our proposed approach tackles class imbalance during the training phase at the embedding learning level, enabling direct integration with the learning process. We demonstrate the effectiveness of our solution on both real-world and synthetic imbalanced datasets, showing consistent performance improvements over both traditional and learnable activation functions.