Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Leveraging human motion data to impart robots with versatile manipulation skills has emerged as a promising paradigm in robotic manipulation. Nevertheless, translating multi-source human hand motions into feasible robot behaviors remains challenging, particularly for robots equipped with multi-fingered dexterous hands characterized by complex, high-dimensional action spaces. Moreover, existing approaches often struggle to produce policies capable of adapting to diverse environmental conditions. In this paper, we introduce HERMES, a human-to-robot learning framework for mobile bimanual dexterous manipulation. First, HERMES formulates a unified reinforcement learning approach capable of seamlessly transforming heterogeneous human hand motions from multiple sources into physically plausible robotic behaviors. Subsequently, to mitigate the sim2real gap, we devise an end-to-end, depth image-based sim2real transfer method for improved generalization to real-world scenarios. Furthermore, to enable autonomous operation in varied and unstructured environments, we augment the navigation foundation model with a closed-loop Perspective-n-Point (PnP) localization mechanism, ensuring precise alignment of visual goals and effectively bridging autonomous navigation and dexterous manipulation. Extensive experimental results demonstrate that HERMES consistently exhibits generalizable behaviors across diverse, in-the-wild scenarios, successfully performing numerous complex mobile bimanual dexterous manipulation tasks. Project Page:https://gemcollector.github.io/HERMES/.




Vision Transformers have demonstrated remarkable success in computer vision tasks, yet their reliance on learnable one-dimensional positional embeddings fundamentally disrupts the inherent two-dimensional spatial structure of images through patch flattening procedures. Traditional positional encoding approaches lack geometric constraints and fail to establish monotonic correspondence between Euclidean spatial distances and sequential index distances, thereby limiting the model's capacity to leverage spatial proximity priors effectively. We propose Weierstrass Elliptic Function Positional Encoding (WEF-PE), a mathematically principled approach that directly addresses two-dimensional coordinates through natural complex domain representation, where the doubly periodic properties of elliptic functions align remarkably with translational invariance patterns commonly observed in visual data. Our method exploits the non-linear geometric nature of elliptic functions to encode spatial distance relationships naturally, while the algebraic addition formula enables direct derivation of relative positional information between arbitrary patch pairs from their absolute encodings. Comprehensive experiments demonstrate that WEF-PE achieves superior performance across diverse scenarios, including 63.78\% accuracy on CIFAR-100 from-scratch training with ViT-Tiny architecture, 93.28\% on CIFAR-100 fine-tuning with ViT-Base, and consistent improvements on VTAB-1k benchmark tasks. Theoretical analysis confirms the distance-decay property through rigorous mathematical proof, while attention visualization reveals enhanced geometric inductive bias and more coherent semantic focus compared to conventional approaches.The source code implementing the methods described in this paper is publicly available on GitHub.
State-of-the-art text-to-image models excel at photorealistic rendering but often struggle to capture the layout and object relationships implied by complex prompts. Scene graphs provide a natural structural prior, yet previous graph-guided approaches have typically relied on heavy GAN or diffusion pipelines, which lag behind modern autoregressive architectures in both speed and fidelity. We introduce SATURN (Structured Arrangement of Triplets for Unified Rendering Networks), a lightweight extension to VAR-CLIP that translates a scene graph into a salience-ordered token sequence, enabling a frozen CLIP-VQ-VAE backbone to interpret graph structure while fine-tuning only the VAR transformer. On the Visual Genome dataset, SATURN reduces FID from 56.45% to 21.62% and increases the Inception Score from 16.03 to 24.78, outperforming prior methods such as SG2IM and SGDiff without requiring extra modules or multi-stage training. Qualitative results further confirm improvements in object count fidelity and spatial relation accuracy, showing that SATURN effectively combines structural awareness with state-of-the-art autoregressive fidelity.
The deployment of Machine Learning models intraoperatively for tissue characterisation can assist decision making and guide safe tumour resections. For image classification models, pixel attribution methods are popular to infer explainability. However, overconfidence in deep learning model's predictions translates to overconfidence in pixel attribution. In this paper, we propose the first approach which incorporates risk estimation into a pixel attribution method for improved image classification explainability. The proposed method iteratively applies a classification model with a pixel attribution method to create a volume of PA maps. This volume is used for the first time, to generate a pixel-wise distribution of PA values. We introduce a method to generate an enhanced PA map by estimating the expectation values of the pixel-wise distributions. In addition, the coefficient of variation (CV) is used to estimate pixel-wise risk of this enhanced PA map. Hence, the proposed method not only provides an improved PA map but also produces an estimation of risk on the output PA values. Performance evaluation on probe-based Confocal Laser Endomicroscopy (pCLE) data and ImageNet verifies that our improved explainability method outperforms the state-of-the-art.
Visual speech recognition (VSR) systems decode spoken words from an input sequence using only the video data. Practical applications of such systems include medical assistance as well as human-machine interactions. A VSR system is typically employed in a complementary role in cases where the audio is corrupt or not available. In order to accurately predict the spoken words, these architectures often rely on deep neural networks in order to extract meaningful representations from the input sequence. While deep architectures achieve impressive recognition performance, relying on such models incurs significant computation costs which translates into increased resource demands in terms of hardware requirements and results in limited applicability in real-world scenarios where resources might be constrained. This factor prevents wider adoption and deployment of speech recognition systems in more practical applications. In this work, we aim to alleviate this issue by developing architectures for VSR that have low hardware costs. Following the standard two-network design paradigm, where one network handles visual feature extraction and another one utilizes the extracted features to classify the entire sequence, we develop lightweight end-to-end architectures by first benchmarking efficient models from the image classification literature, and then adopting lightweight block designs in a temporal convolution network backbone. We create several unified models with low resource requirements but strong recognition performance. Experiments on the largest public database for English words demonstrate the effectiveness and practicality of our developed models. Code and trained models will be made publicly available.




Conventional optical character recognition (OCR) techniques segmented each character and then recognized. This made them prone to error in character segmentation, and devoid of context to exploit language models. Advances in sequence to sequence translation in last decade led to modern techniques first detecting words and then inputting one word at a time to a model to directly output full words as sequence of characters. This allowed better utilization of language models and bypass error-prone character segmentation step. We observe that the above transition in style has moved the bottleneck in accuracy to word segmentation. Hence, in this paper, we propose a natural and logical progression from word level OCR to line-level OCR. The proposal allows to bypass errors in word detection, and provides larger sentence context for better utilization of language models. We show that the proposed technique not only improves the accuracy but also efficiency of OCR. Despite our thorough literature survey, we did not find any public dataset to train and benchmark such shift from word to line-level OCR. Hence, we also contribute a meticulously curated dataset of 251 English page images with line-level annotations. Our experimentation revealed a notable end-to-end accuracy improvement of 5.4%, underscoring the potential benefits of transitioning towards line-level OCR, especially for document images. We also report a 4 times improvement in efficiency compared to word-based pipelines. With continuous improvements in large language models, our methodology also holds potential to exploit such advances. Project Website: https://nishitanand.github.io/line-level-ocr-website
Multimodal Machine Translation (MMT) typically enhances text-only translation by incorporating aligned visual features. Despite the remarkable progress, state-of-the-art MMT approaches often rely on paired image-text inputs at inference and are sensitive to irrelevant visual noise, which limits their robustness and practical applicability. To address these issues, we propose D2P-MMT, a diffusion-based dual-branch prompting framework for robust vision-guided translation. Specifically, D2P-MMT requires only the source text and a reconstructed image generated by a pre-trained diffusion model, which naturally filters out distracting visual details while preserving semantic cues. During training, the model jointly learns from both authentic and reconstructed images using a dual-branch prompting strategy, encouraging rich cross-modal interactions. To bridge the modality gap and mitigate training-inference discrepancies, we introduce a distributional alignment loss that enforces consistency between the output distributions of the two branches. Extensive experiments on the Multi30K dataset demonstrate that D2P-MMT achieves superior translation performance compared to existing state-of-the-art approaches.
Constructed languages (conlangs) such as Esperanto and Quenya have played diverse roles in art, philosophy, and international communication. Meanwhile, large-scale foundation models have revolutionized creative generation in text, images, and beyond. In this work, we leverage modern LLMs as computational creativity aids for end-to-end conlang creation. We introduce ConlangCrafter, a multi-hop pipeline that decomposes language design into modular stages -- phonology, morphology, syntax, lexicon generation, and translation. At each stage, our method leverages LLMs' meta-linguistic reasoning capabilities, injecting randomness to encourage diversity and leveraging self-refinement feedback to encourage consistency in the emerging language description. We evaluate ConlangCrafter on metrics measuring coherence and typological diversity, demonstrating its ability to produce coherent and varied conlangs without human linguistic expertise.
Segmentation of nuclei regions from histological images enables morphometric analysis of nuclei structures, which in turn helps in the detection and diagnosis of diseases under consideration. To develop a nuclei segmentation algorithm, applicable to different types of target domain representations, image-to-image translation networks can be considered as they are invariant to target domain image representations. One of the important issues with image-to-image translation models is that they fail miserably when the information content between two image domains are asymmetric in nature. In this regard, the paper introduces a new deep generative model for segmenting nuclei structures from histological images. The proposed model considers an embedding space for handling information-disparity between information-rich histological image space and information-poor segmentation map domain. Integrating judiciously the concepts of optimal transport and measure theory, the model develops an invertible generator, which provides an efficient optimization framework with lower network complexity. The concept of invertible generator automatically eliminates the need of any explicit cycle-consistency loss. The proposed model also introduces a spatially-constrained squeeze operation within the framework of invertible generator to maintain spatial continuity within the image patches. The model provides a better trade-off between network complexity and model performance compared to other existing models having complex network architectures. The performance of the proposed deep generative model, along with a comparison with state-of-the-art nuclei segmentation methods, is demonstrated on publicly available histological image data sets.




Document shadow removal is a crucial task in the field of document image enhancement. However, existing methods tend to remove shadows with constant color background and ignore color shadows. In this paper, we first design a diffusion model in latent space for document image shadow removal, called DocShaDiffusion. It translates shadow images from pixel space to latent space, enabling the model to more easily capture essential features. To address the issue of color shadows, we design a shadow soft-mask generation module (SSGM). It is able to produce accurate shadow mask and add noise into shadow regions specially. Guided by the shadow mask, a shadow mask-aware guided diffusion module (SMGDM) is proposed to remove shadows from document images by supervising the diffusion and denoising process. We also propose a shadow-robust perceptual feature loss to preserve details and structures in document images. Moreover, we develop a large-scale synthetic document color shadow removal dataset (SDCSRD). It simulates the distribution of realistic color shadows and provides powerful supports for the training of models. Experiments on three public datasets validate the proposed method's superiority over state-of-the-art. Our code and dataset will be publicly available.