Scalable oversight, the process by which weaker AI systems supervise stronger ones, has been proposed as a key strategy to control future superintelligent systems. However, it is still unclear how scalable oversight itself scales. To address this gap, we propose a framework that quantifies the probability of successful oversight as a function of the capabilities of the overseer and the system being overseen. Specifically, our framework models oversight as a game between capability-mismatched players; the players have oversight-specific and deception-specific Elo scores that are a piecewise-linear function of their general intelligence, with two plateaus corresponding to task incompetence and task saturation. We validate our framework with a modified version of the game Nim and then apply it to four oversight games: "Mafia", "Debate", "Backdoor Code" and "Wargames". For each game, we find scaling laws that approximate how domain performance depends on general AI system capability (using Chatbot Arena Elo as a proxy for general capability). We then build on our findings in a theoretical study of Nested Scalable Oversight (NSO), a process in which trusted models oversee untrusted stronger models, which then become the trusted models in the next step. We identify conditions under which NSO succeeds and derive numerically (and in some cases analytically) the optimal number of oversight levels to maximize the probability of oversight success. In our numerical examples, the NSO success rate is below 52% when overseeing systems that are 400 Elo points stronger than the baseline overseer, and it declines further for overseeing even stronger systems.




The integration of Large Language Models (LLMs) into diverse applications, ranging from interactive chatbots and cloud AIOps to intelligent agents, has introduced a wide spectrum of Service Level Objectives (SLOs) for responsiveness. These workloads include latency-sensitive requests focused on per-token latency in streaming chat, throughput-intensive requests that require rapid full responses to invoke tools, and collective requests with dynamic dependencies arising from self-reflection or agent-based reasoning. This workload diversity, amplified by unpredictable request information such as response lengths and runtime dependencies, makes existing schedulers inadequate even within their design envelopes. In this paper, we define service gain as the useful service delivered by completing requests. We observe that as SLO directly reflects the actual performance needs of requests, completing a request much faster than its SLO (e.g., deadline) yields limited additional service gain. Based on this insight, we introduce Tempo, the first systematic SLO-aware scheduler designed to maximize service gain across diverse LLM workloads. Tempo allocates just enough serving bandwidth to meet each SLO, maximizing residual capacity for others best-effort workloads. Instead of assuming request information or none at all, it adopts a hybrid scheduling strategy: using quantile-based response upper bounds and dependency-graph matching for conservative initial estimates, prioritizing requests by service gain density, and refining decisions online as generation progresses. Our evaluation across diverse workloads, including chat, reasoning, and agentic pipelines, shows that Tempo improves end-to-end service gain by up to 8.3$\times$ and achieves up to 10.3$\times$ SLO goodput compared to state-of-the-art designs
Recently, Large Language Models (LLMs) have demonstrated remarkable advancements in Natural Language Processing (NLP). However, generating high-quality text that balances coherence, diversity, and relevance remains challenging. Traditional decoding methods, such as bean search and top-k sampling, often struggle with either repetitive or incoherent outputs, particularly in tasks that require long-form text generation. To address these limitations, the paper proposes a novel enhancement of the well-known Contrastive Search algorithm, Context-Enhanced Contrastive Search (CECS) with contextual calibration. The proposed scheme introduces several novelties including dynamic contextual importance weighting, multi-level Contrastive Search, and adaptive temperature control, to optimize the balance between fluency, creativity, and precision. The performance of CECS is evaluated using several standard metrics such as BLEU, ROUGE, and semantic similarity. Experimental results demonstrate significant improvements in both coherence and relevance of the generated texts by CECS outperforming the existing Contrastive Search techniques. The proposed algorithm has several potential applications in the real world including legal document drafting, customer service chatbots, and content marketing.
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks -- from offering writing support to delivering tailored recommendations or consultations. Over time, the interaction history between a user and an LLM can provide extensive information about an individual's traits and preferences. However, open questions remain on how well LLMs today can effectively leverage such history to (1) internalize the user's inherent traits and preferences, (2) track how the user profiling and preferences evolve over time, and (3) generate personalized responses accordingly in new scenarios. In this work, we introduce the PERSONAMEM benchmark. PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories, each containing up to 60 sessions of multi-turn conversations across 15 real-world tasks that require personalization. Given an in-situ user query, i.e. query issued by the user from the first-person perspective, we evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile. We observe that current LLMs still struggle to recognize the dynamic evolution in users' profiles over time through direct prompting approaches. As a consequence, LLMs often fail to deliver responses that align with users' current situations and preferences, with frontier models such as GPT-4.1, o4-mini, GPT-4.5, o1, or Gemini-2.0 achieving only around 50% overall accuracy, suggesting room for improvement. We hope that PERSONAMEM, along with the user profile and conversation simulation pipeline, can facilitate future research in the development of truly user-aware chatbots. Code and data are available at github.com/bowen-upenn/PersonaMem.
Suicide is a critical global public health issue, with millions experiencing suicidal ideation (SI) each year. Online spaces enable individuals to express SI and seek peer support. While prior research has revealed the potential of detecting SI using machine learning and natural language analysis, a key limitation is the lack of a theoretical framework to understand the underlying factors affecting high-risk suicidal intent. To bridge this gap, we adopted the Interpersonal Theory of Suicide (IPTS) as an analytic lens to analyze 59,607 posts from Reddit's r/SuicideWatch, categorizing them into SI dimensions (Loneliness, Lack of Reciprocal Love, Self Hate, and Liability) and risk factors (Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability of Suicide). We found that high-risk SI posts express planning and attempts, methods and tools, and weaknesses and pain. In addition, we also examined the language of supportive responses through psycholinguistic and content analyses to find that individuals respond differently to different stages of Suicidal Ideation (SI) posts. Finally, we explored the role of AI chatbots in providing effective supportive responses to suicidal ideation posts. We found that although AI improved structural coherence, expert evaluations highlight persistent shortcomings in providing dynamic, personalized, and deeply empathetic support. These findings underscore the need for careful reflection and deeper understanding in both the development and consideration of AI-driven interventions for effective mental health support.




Cancer patients are increasingly turning to large language models (LLMs) as a new form of internet search for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with detailed clinical contexts. In this paper, we first evaluate LLMs on cancer-related questions drawn from real patients, reviewed by three hematology oncology physicians. While responses are generally accurate, with GPT-4-Turbo scoring 4.13 out of 5, the models frequently fail to recognize or address false presuppositions in the questions-posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-4o, Gemini-1.Pro, and Claude-3.5-Sonnet -- corrects these false presuppositions more than 30% of the time. Even advanced medical agentic methods do not prevent LLMs from ignoring false presuppositions. These findings expose a critical gap in the clinical reliability of LLMs and underscore the need for more robust safeguards in medical AI systems.




Collaborative assistants, or chatbots, are data-driven decision support systems that enable natural interaction for task completion. While they can meet critical needs in modern society, concerns about their reliability and trustworthiness persist. In particular, Large Language Model (LLM)-based chatbots like ChatGPT, Gemini, and DeepSeek are becoming more accessible. However, such chatbots have limitations, including their inability to explain response generation, the risk of generating problematic content, the lack of standardized testing for reliability, and the need for deep AI expertise and extended development times. These issues make chatbots unsuitable for trust-sensitive applications like elections or healthcare. To address these concerns, we introduce SafeChat, a general architecture for building safe and trustworthy chatbots, with a focus on information retrieval use cases. Key features of SafeChat include: (a) safety, with a domain-agnostic design where responses are grounded and traceable to approved sources (provenance), and 'do-not-respond' strategies to prevent harmful answers; (b) usability, with automatic extractive summarization of long responses, traceable to their sources, and automated trust assessments to communicate expected chatbot behavior, such as sentiment; and (c) fast, scalable development, including a CSV-driven workflow, automated testing, and integration with various devices. We implemented SafeChat in an executable framework using the open-source chatbot platform Rasa. A case study demonstrates its application in building ElectionBot-SC, a chatbot designed to safely disseminate official election information. SafeChat is being used in many domains, validating its potential, and is available at: https://github.com/ai4society/trustworthy-chatbot.
Reward models (RMs) play a crucial role in Reinforcement Learning from Human Feedback by serving as proxies for human preferences in aligning large language models. In this paper, we identify a model preference bias in RMs, where they systematically assign disproportionately high scores to responses from certain policy models. This bias distorts ranking evaluations and leads to unfair judgments. To address this issue, we propose a calibration method named CHatbot Arena calibrated Reward Modeling (CHARM) that leverages Elo scores from the Chatbot Arena leaderboard to mitigate RM overvaluation. We also introduce a Mismatch Degree metric to measure this preference bias. Our approach is computationally efficient, requiring only a small preference dataset for continued training of the RM. We conduct extensive experiments on reward model benchmarks and human preference alignment. Results demonstrate that our calibrated RMs (1) achieve improved evaluation accuracy on RM-Bench and the Chat-Hard domain of RewardBench, and (2) exhibit a stronger correlation with human preferences by producing scores more closely aligned with Elo rankings. By mitigating model preference bias, our method provides a generalizable and efficient solution for building fairer and more reliable reward models.
Short technical support pages such as IBM Technotes are quite common in technical support domain. These pages can be very useful as the knowledge sources for technical support applications such as chatbots, search engines and question-answering (QA) systems. Information extracted from documents to drive technical support applications is often stored in the form of Knowledge Graph (KG). Building KGs from a large corpus of documents poses a challenge of granularity because a large number of entities and actions are present in each page. The KG becomes virtually unusable if all entities and actions from these pages are stored in the KG. Therefore, only key entities and actions from each page are extracted and stored in the KG. This approach however leads to loss of knowledge represented by entities and actions left out of the KG as they are no longer available to graph search and reasoning functions. We propose a set of techniques to create micro knowledge graph (micrograph) for each of such web pages. The micrograph stores all the entities and actions in a page and also takes advantage of the structure of the page to represent exactly in which part of that page these entities and actions appeared, and also how they relate to each other. These micrographs can be used as additional knowledge sources by technical support applications. We define schemas for representing semi-structured and plain text knowledge present in the technical support web pages. Solutions in technical support domain include procedures made of steps. We also propose a technique to extract procedures from these webpages and the schemas to represent them in the micrographs. We also discuss how technical support applications can take advantage of the micrographs.
The emergence of generative AI chatbots such as ChatGPT has prompted growing public and academic interest in their role as informal mental health support tools. While early rule-based systems have been around for several years, large language models (LLMs) offer new capabilities in conversational fluency, empathy simulation, and availability. This study explores how users engage with LLMs as mental health tools by analyzing over 10,000 TikTok comments from videos referencing LLMs as mental health tools. Using a self-developed tiered coding schema and supervised classification models, we identify user experiences, attitudes, and recurring themes. Results show that nearly 20% of comments reflect personal use, with these users expressing overwhelmingly positive attitudes. Commonly cited benefits include accessibility, emotional support, and perceived therapeutic value. However, concerns around privacy, generic responses, and the lack of professional oversight remain prominent. It is important to note that the user feedback does not indicate which therapeutic framework, if any, the LLM-generated output aligns with. While the findings underscore the growing relevance of AI in everyday practices, they also highlight the urgent need for clinical and ethical scrutiny in the use of AI for mental health support.