Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Multi-focus image fusion (MFIF) aims to yield an all-focused image from multiple partially focused inputs, which is crucial in applications cover sur-veillance, microscopy, and computational photography. However, existing methods struggle to preserve sharp focus-defocus boundaries, often resulting in blurred transitions and focused details loss. To solve this problem, we propose a MFIF method based on significant boundary enhancement, which generates high-quality fused boundaries while effectively detecting focus in-formation. Particularly, we propose a gradient-domain-based model that can obtain initial fusion results with complete boundaries and effectively pre-serve the boundary details. Additionally, we introduce Tenengrad gradient detection to extract salient features from both the source images and the ini-tial fused image, generating the corresponding saliency maps. For boundary refinement, we develop a focus metric based on gradient and complementary information, integrating the salient features with the complementary infor-mation across images to emphasize focused regions and produce a high-quality initial decision result. Extensive experiments on four public datasets demonstrate that our method consistently outperforms 12 state-of-the-art methods in both subjective and objective evaluations. We have realized codes in https://github.com/Lihyua/GICI
Multi-View Multi-Object Tracking (MVMOT) is essential for applications such as surveillance, autonomous driving, and sports analytics. However, maintaining consistent object identities across multiple cameras remains challenging due to viewpoint changes, lighting variations, and occlusions, which often lead to tracking errors.Recent methods project features from multiple cameras into a unified Bird's-Eye-View (BEV) space to improve robustness against occlusion. However, this projection introduces feature distortion and non-uniform density caused by variations in object scale with distance. These issues degrade the quality of the fused representation and reduce detection and tracking accuracy.To address these problems, we propose SCFusion, a framework that combines three techniques to improve multi-view feature integration. First, it applies a sparse transformation to avoid unnatural interpolation during projection. Next, it performs density-aware weighting to adaptively fuse features based on spatial confidence and camera distance. Finally, it introduces a multi-view consistency loss that encourages each camera to learn discriminative features independently before fusion.Experiments show that SCFusion achieves state-of-the-art performance, reaching an IDF1 score of 95.9% on WildTrack and a MODP of 89.2% on MultiviewX, outperforming the baseline method TrackTacular. These results demonstrate that SCFusion effectively mitigates the limitations of conventional BEV projection and provides a robust and accurate solution for multi-view object detection and tracking.
Large Language Models are increasingly used in applications requiring objective assessment, which could be compromised by political bias. Many studies found preferences for left-leaning positions in LLMs, but downstream effects on tasks like fact-checking remain underexplored. In this study, we systematically investigate political bias through exchanging words with euphemisms or dysphemisms in German claims. We construct minimal pairs of factually equivalent claims that differ in political connotation, to assess the consistency of LLMs in classifying them as true or false. We evaluate six LLMs and find that, more than political leaning, the presence of judgmental words significantly influences truthfulness assessment. While a few models show tendencies of political bias, this is not mitigated by explicitly calling for objectivism in prompts.
Small moving target detection is crucial for many defense applications but remains highly challenging due to low signal-to-noise ratios, ambiguous visual cues, and cluttered backgrounds. In this work, we propose a novel deep learning framework that differs fundamentally from existing approaches, which often rely on target-specific features or motion cues and tend to lack robustness in complex environments. Our key insight is that small target detection and background discrimination are inherently coupled, even cluttered video backgrounds often exhibit strong low-rank structures that can serve as stable priors for detection. We reformulate the task as a tensor-based low-rank and sparse decomposition problem and conduct a theoretical analysis of the background, target, and noise components to guide model design. Building on these insights, we introduce TenRPCANet, a deep neural network that requires minimal assumptions about target characteristics. Specifically, we propose a tokenization strategy that implicitly enforces multi-order tensor low-rank priors through a self-attention mechanism. This mechanism captures both local and non-local self-similarity to model the low-rank background without relying on explicit iterative optimization. In addition, inspired by the sparse component update in tensor RPCA, we design a feature refinement module to enhance target saliency. The proposed method achieves state-of-the-art performance on two highly distinct and challenging tasks: multi-frame infrared small target detection and space object detection. These results demonstrate both the effectiveness and the generalizability of our approach.
Background: Many attempts to validate gait pipelines that process sensor data to detect gait events have focused on the detection of initial contacts only in supervised settings using a single sensor. Objective: To evaluate the performance of a gait pipeline in detecting initial/final contacts using a step detection algorithm adaptive to different test settings, smartphone wear locations, and gait impairment levels. Methods: In GaitLab (ISRCTN15993728), healthy controls (HC) and people with multiple sclerosis (PwMS; Expanded Disability Status Scale 0.0-6.5) performed supervised Two-Minute Walk Test [2MWT] (structured in-lab overground and treadmill 2MWT) during two on-site visits carrying six smartphones and unsupervised walking activities (structured and unstructured real-world walking) daily for 10-14 days using a single smartphone. Reference gait data were collected with a motion capture system or Gait Up sensors. The pipeline's performance in detecting initial/final contacts was evaluated through F1 scores and absolute temporal error with respect to reference measurement systems. Results: We studied 35 HC and 93 PwMS. Initial/final contacts were accurately detected across all smartphone wear locations. Median F1 scores for initial/final contacts on in-lab 2MWT were >=98.2%/96.5% in HC and >=98.5%/97.7% in PwMS. F1 scores remained high on structured (HC: 100% [0.3%]/100% [0.2%]; PwMS: 99.5% [1.9%]/99.4% [2.5%]) and unstructured real-world walking (HC: 97.8% [2.6%]/97.8% [2.8%]; PwMS: 94.4% [6.2%]/94.0% [6.5%]). Median temporal errors were <=0.08 s. Neither age, sex, disease severity, walking aid use, nor setting (outdoor/indoor) impacted pipeline performance (all p>0.05). Conclusion: This gait pipeline accurately and consistently detects initial and final contacts in PwMS across different smartphone locations and environments, highlighting its potential for real-world gait assessment.
Object re-identification (Re-ID) methods are highly sensitive to label noise, which typically leads to significant performance degradation. We address this challenge by reframing Re-ID as a supervised image similarity task and adopting a Siamese network architecture trained to capture discriminative pairwise relationships. Central to our approach is a novel statistical outlier detection (OD) framework, termed Beta-SOD (Beta mixture Similarity-based Outlier Detection), which models the distribution of cosine similarities between embedding pairs using a two-component Beta distribution mixture model. We establish a novel identifiability result for mixtures of two Beta distributions, ensuring that our learning task is well-posed.The proposed OD step complements the Re-ID architecture combining binary cross-entropy, contrastive, and cosine embedding losses that jointly optimize feature-level similarity learning.We demonstrate the effectiveness of Beta-SOD in de-noising and Re-ID tasks for person Re-ID, on CUHK03 and Market-1501 datasets, and vehicle Re-ID, on VeRi-776 dataset. Our method shows superior performance compared to the state-of-the-art methods across various noise levels (10-30\%), demonstrating both robustness and broad applicability in noisy Re-ID scenarios. The implementation of Beta-SOD is available at: https://github.com/waqar3411/Beta-SOD
Benchmarking multi-object tracking and object detection model performance is an essential step in machine learning model development, as it allows researchers to evaluate model detection and tracker performance on human-generated 'test' data, facilitating consistent comparisons between models and trackers and aiding performance optimization. In this study, a novel benchmark video dataset was developed and used to assess the performance of several Monterey Bay Aquarium Research Institute object detection models and a FathomNet single-class object detection model together with several trackers. The dataset consists of four video sequences representing midwater and benthic deep-sea habitats. Performance was evaluated using Higher Order Tracking Accuracy, a metric that balances detection, localization, and association accuracy. To the best of our knowledge, this is the first publicly available benchmark for multi-object tracking in deep-sea video footage. We provide the benchmark data, a clearly documented workflow for generating additional benchmark videos, as well as example Python notebooks for computing metrics.




Existing RGB-Event detection methods process the low-information regions of both modalities (background in images and non-event regions in event data) uniformly during feature extraction and fusion, resulting in high computational costs and suboptimal performance. To mitigate the computational redundancy during feature extraction, researchers have respectively proposed token sparsification methods for the image and event modalities. However, these methods employ a fixed number or threshold for token selection, hindering the retention of informative tokens for samples with varying complexity. To achieve a better balance between accuracy and efficiency, we propose FocusMamba, which performs adaptive collaborative sparsification of multimodal features and efficiently integrates complementary information. Specifically, an Event-Guided Multimodal Sparsification (EGMS) strategy is designed to identify and adaptively discard low-information regions within each modality by leveraging scene content changes perceived by the event camera. Based on the sparsification results, a Cross-Modality Focus Fusion (CMFF) module is proposed to effectively capture and integrate complementary features from both modalities. Experiments on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that the proposed method achieves superior performance in both accuracy and efficiency compared to existing methods. The code will be available at https://github.com/Zizzzzzzz/FocusMamba.




Recent graph convolutional neural networks (GCNs) have shown high performance in the field of human action recognition by using human skeleton poses. However, it fails to detect human-object interaction cases successfully due to the lack of effective representation of the scene information and appropriate learning architectures. In this context, we propose a methodology to utilize human action recognition performance by considering fixed object information in the environment and following a multi-task learning approach. In order to evaluate the proposed method, we collected real data from public environments and prepared our data set, which includes interaction classes of hands-on fixed objects (e.g., ATM ticketing machines, check-in/out machines, etc.) and non-interaction classes of walking and standing. The multi-task learning approach, along with interaction area information, succeeds in recognizing the studied interaction and non-interaction actions with an accuracy of 99.25%, outperforming the accuracy of the base model using only human skeleton poses by 2.75%.




Background: Coronary Artery Disease (CAD) is one of the leading causes of death worldwide. Invasive Coronary Angiography (ICA), regarded as the gold standard for CAD diagnosis, necessitates precise vessel segmentation and stenosis detection. However, ICA images are typically characterized by low contrast, high noise levels, and complex, fine-grained vascular structures, which pose significant challenges to the clinical adoption of existing segmentation and detection methods. Objective: This study aims to improve the accuracy of coronary artery segmentation and stenosis detection in ICA images by integrating multi-scale structural priors, state-space-based long-range dependency modeling, and frequency-domain detail enhancement strategies. Methods: We propose SFD-Mamba2Net, an end-to-end framework tailored for ICA-based vascular segmentation and stenosis detection. In the encoder, a Curvature-Aware Structural Enhancement (CASE) module is embedded to leverage multi-scale responses for highlighting slender tubular vascular structures, suppressing background interference, and directing attention toward vascular regions. In the decoder, we introduce a Progressive High-Frequency Perception (PHFP) module that employs multi-level wavelet decomposition to progressively refine high-frequency details while integrating low-frequency global structures. Results and Conclusions: SFD-Mamba2Net consistently outperformed state-of-the-art methods across eight segmentation metrics, and achieved the highest true positive rate and positive predictive value in stenosis detection.