Tool-using LLM agents increasingly coordinate real workloads by selecting and chaining third-party tools based on text-visible metadata such as tool names, descriptions, and return messages. We show that this convenience creates a supply-chain attack surface: a malicious MCP tool server can be co-registered alongside normal tools and induce overthinking loops, where individually trivial or plausible tool calls compose into cyclic trajectories that inflate end-to-end tokens and latency without any single step looking abnormal. We formalize this as a structural overthinking attack, distinguishable from token-level verbosity, and implement 14 malicious tools across three servers that trigger repetition, forced refinement, and distraction. Across heterogeneous registries and multiple tool-capable models, the attack causes severe resource amplification (up to $142.4\times$ tokens) and can degrade task outcomes. Finally, we find that decoding-time concision controls do not reliably prevent loop induction, suggesting defenses should reason about tool-call structure rather than tokens alone.
We present ROSA -- Roundabout Optimized Speed Advisory -- a system that combines multi-agent trajectory prediction with coordinated speed guidance for multimodal, mixed traffic at roundabouts. Using a Transformer-based model, ROSA jointly predicts the future trajectories of vehicles and Vulnerable Road Users (VRUs) at roundabouts. Trained for single-step prediction and deployed autoregressively, it generates deterministic outputs, enabling actionable speed advisories. Incorporating motion dynamics, the model achieves high accuracy (ADE: 1.29m, FDE: 2.99m at a five-second prediction horizon), surpassing prior work. Adding route intention further improves performance (ADE: 1.10m, FDE: 2.36m), demonstrating the value of connected vehicle data. Based on predicted conflicts with VRUs and circulating vehicles, ROSA provides real-time, proactive speed advisories for approaching and entering the roundabout. Despite prediction uncertainty, ROSA significantly improves vehicle efficiency and safety, with positive effects even on perceived safety from a VRU perspective. The source code of this work is available under: github.com/urbanAIthi/ROSA.
Current meta-learning methods are constrained to narrow task distributions with fixed feature and label spaces, limiting applicability. Moreover, the current meta-learning literature uses key terms like "universal" and "general-purpose" inconsistently and lacks precise definitions, hindering comparability. We introduce a theoretical framework for meta-learning which formally defines practical universality and introduces a distinction between algorithm-explicit and algorithm-implicit learning, providing a principled vocabulary for reasoning about universal meta-learning methods. Guided by this framework, we present TAIL, a transformer-based algorithm-implicit meta-learner that functions across tasks with varying domains, modalities, and label configurations. TAIL features three innovations over prior transformer-based meta-learners: random projections for cross-modal feature encoding, random injection label embeddings that extrapolate to larger label spaces, and efficient inline query processing. TAIL achieves state-of-the-art performance on standard few-shot benchmarks while generalizing to unseen domains. Unlike other meta-learning methods, it also generalizes to unseen modalities, solving text classification tasks despite training exclusively on images, handles tasks with up to 20$\times$ more classes than seen during training, and provides orders-of-magnitude computational savings over prior transformer-based approaches.
Deep Learning architectures, and in particular Transformers, are conventionally viewed as a composition of layers. These layers are actually often obtained as the sum of two contributions: a residual path that copies the input and the output of a Transformer block. As a consequence, the inner representations (i.e. the input of these blocks) can be interpreted as iterative refinement of a propagated latent representation. Under this lens, many works suggest that the inner space is shared across layers, meaning that tokens can be decoded at early stages. Mechanistic interpretability even goes further by conjecturing that some layers act as refinement layers. Following this path, we propose inference-time inner looping, which prolongs refinement in pretrained off-the-shelf language models by repeatedly re-applying a selected block range. Across multiple benchmarks, inner looping yields modest but consistent accuracy improvements. Analyses of the resulting latent trajectories suggest more stable state evolution and continued semantic refinement. Overall, our results suggest that additional refinement can be obtained through simple test-time looping, extending computation in frozen pretrained models.
We present StrokeNeXt, a model for stroke classification in 2D Computed Tomography (CT) images. StrokeNeXt employs a dual-branch design with two ConvNeXt encoders, whose features are fused through a lightweight convolutional decoder based on stacked 1D operations, including a bottleneck projection and transformation layers, and a compact classification head. The model is evaluated on a curated dataset of 6,774 CT images, addressing both stroke detection and subtype classification between ischemic and hemorrhage cases. StrokeNeXt consistently outperforms convolutional and Transformer-based baselines, reaching accuracies and F1-scores of up to 0.988. Paired statistical tests confirm that the performance gains are statistically significant, while class-wise sensitivity and specificity demonstrate robust behavior across diagnostic categories. Calibration analysis shows reduced prediction error compared to competing methods, and confusion matrix results indicate low misclassification rates. In addition, the model exhibits low inference time and fast convergence.
Large language models (LLMs) have been introduced to time series forecasting (TSF) to incorporate contextual knowledge beyond numerical signals. However, existing studies question whether LLMs provide genuine benefits, often reporting comparable performance without LLMs. We show that such conclusions stem from limited evaluation settings and do not hold at scale. We conduct a large-scale study of LLM-based TSF (LLM4TSF) across 8 billion observations, 17 forecasting scenarios, 4 horizons, multiple alignment strategies, and both in-domain and out-of-domain settings. Our results demonstrate that \emph{LLM4TS indeed improves forecasting performance}, with especially large gains in cross-domain generalization. Pre-alignment outperforming post-alignment in over 90\% of tasks. Both pretrained knowledge and model architecture of LLMs contribute and play complementary roles: pretraining is critical under distribution shifts, while architecture excels at modeling complex temporal dynamics. Moreover, under large-scale mixed distributions, a fully intact LLM becomes indispensable, as confirmed by token-level routing analysis and prompt-based improvements. Overall, Our findings overturn prior negative assessments, establish clear conditions under which LLMs are not only useful, and provide practical guidance for effective model design. We release our code at https://github.com/EIT-NLP/LLM4TSF.
We systematically investigate the parameter-efficient fine-tuning design space under practical data and compute constraints, and propose D2-LoRA. D2-LoRA achieves 76.4 percent average accuracy across eight question answering and reading comprehension benchmarks using only 5k training samples per task and two epochs, while preserving algebraic mergeability at inference with near-exact numerical equivalence. The method combines signed low-rank residual updates with additive and subtractive components, together with a train-time column-wise projection that keeps each column close to its original norm. After training, the adapter is merged into a single weight matrix, adding zero inference latency. Compared with LoRA, D2-LoRA improves average accuracy by 2.2 percentage points; at matched parameter counts (LoRA rank 2r versus D2-LoRA rank r), the improvement is 1.6 points, indicating gains from architectural design rather than increased parameterization. Compared with DoRA, it matches or exceeds performance on most tasks. Beyond QA and reading comprehension, D2-LoRA improves generative tasks (plus 1.2 ROUGE-L and plus 1.1 percent win rate) and shows 36 percent lower training volatility. The merge preserves numerical fidelity (mean gap about 0.03 percentage points) and recovers about 1.91x evaluation throughput. Training overhead is 19 percent, comparable to DoRA, and decreases with longer input sequences. We provide a geometric analysis explaining how the projection stabilizes training, together with ablation studies isolating the contribution of each design component.
Web agents require massive trajectories to generalize, yet real-world training is constrained by network latency, rate limits, and safety risks. We introduce \textbf{WebWorld} series, the first open-web simulator trained at scale. While existing simulators are restricted to closed environments with thousands of trajectories, WebWorld leverages a scalable data pipeline to train on 1M+ open-web interactions, supporting reasoning, multi-format data, and long-horizon simulations of 30+ steps. For intrinsic evaluation, we introduce WebWorld-Bench with dual metrics spanning nine dimensions, where WebWorld achieves simulation performance comparable to Gemini-3-Pro. For extrinsic evaluation, Qwen3-14B trained on WebWorld-synthesized trajectories improves by +9.2\% on WebArena, reaching performance comparable to GPT-4o. WebWorld enables effective inference-time search, outperforming GPT-5 as a world model. Beyond web simulation, WebWorld exhibits cross-domain generalization to code, GUI, and game environments, providing a replicable recipe for world model construction.
We present a comprehensive overview of the Deep Image Prior (DIP) framework and its applications to image reconstruction in computed tomography. Unlike conventional deep learning methods that rely on large, supervised datasets, the DIP exploits the implicit bias of convolutional neural networks and operates in a fully unsupervised setting, requiring only a single measurement, even in the presence of noise. We describe the standard DIP formulation, outline key algorithmic design choices, and review several strategies to mitigate overfitting, including early stopping, explicit regularisation, and self-guided methods that adapt the network input. In addition, we examine computational improvements such as warm-start and stochastic optimisation methods to reduce the reconstruction time. The discussed methods are tested on real $μ$CT measurements, which allows examination of trade-offs among the different modifications and extensions.
We present TokaMind, an open-source foundation model framework for fusion plasma modeling, based on a Multi-Modal Transformer (MMT) and trained on heterogeneous tokamak diagnostics from the publicly available MAST dataset. TokaMind supports multiple data modalities (time-series, 2D profiles, and videos) with different sampling rates, robust missing-signal handling, and efficient task adaptation via selectively loading and freezing four model components. To represent multi-modal signals, we use a training-free Discrete Cosine Transform embedding (DCT3D) and provide a clean interface for alternative embeddings (e.g., Variational Autoencoders - VAEs). We evaluate TokaMind on the recently introduced MAST benchmark TokaMark, comparing training and embedding strategies. Our results show that fine-tuned TokaMind outperforms the benchmark baseline on all but one task, and that, for several tasks, lightweight fine-tuning yields better performance than training the same architecture from scratch under a matched epoch budget. These findings highlight the benefits of multi-modal pretraining for tokamak plasma dynamics and provide a practical, extensible foundation for future fusion modeling tasks. Training code and model weights will be made publicly available.