Safe and interpretable sequential decision-making is critical in healthcare, yet reinforcement learning (RL) policies for sepsis treatment optimization remain opaque and difficult to verify. Standard probabilistic model checkers operate on the full state space, which becomes infeasible for larger MDPs, and cannot explain why a learned policy makes particular decisions. COOL-MC wraps the model checker Storm but adds three key capabilities: it constructs only the reachable state space induced by a trained policy, yielding a smaller discrete-time Markov chain amenable to verification even when full-MDP analysis is intractable; it automatically labels states with clinically meaningful atomic propositions; and it integrates explainability methods with probabilistic computation tree logic (PCTL) queries to reveal which features drive decisions across treatment trajectories. We demonstrate COOL-MC's capabilities on the ICU-Sepsis MDP, a benchmark derived from approximately 17,000 sepsis patient records, which serves as a case study for applying COOL-MC to the formal analysis of sepsis treatment policies. Our analysis establishes hard bounds via full MDP verification, trains a safe RL policy that achieves optimal survival probability, and analyzes its behavior via PCTL verification and explainability on the induced DTMC. This reveals, for instance, that our trained policy relies predominantly on prior dosing history rather than the patient's evolving condition, a weakness that is invisible to standard evaluation but is exposed by COOL-MC's integration of formal verification and explainability. Our results illustrate how COOL-MC could serve as a tool for clinicians to investigate and debug sepsis treatment policies before deployment.