Keio University, Japan
Abstract:Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic joint inflammation. Early diagnosis and tight follow-up are essential to the management of RA, as ongoing inflammation can cause irreversible joint damage. The detection of arthritis is important for diagnosis and assessment of disease activity; however, it often takes a long time for patients to receive appropriate specialist care. Therefore, there is a strong need to develop systems that can detect joint inflammation easily using RGB images captured at home. Consequently, we tackle the task of RA inflammation detection from RGB hand images. This task is highly challenging due to general issues in medical imaging, such as the scarcity of positive samples, data imbalance, and the inherent difficulty of the task itself. However, to the best of our knowledge, no existing work has explicitly addressed these challenges in RGB-based RA inflammation detection. This paper quantitatively demonstrates the difficulty of visually detecting inflammation by constructing a dedicated dataset, and we propose a inflammation detection framework with global local encoder that combines self-supervised pretraining on large-scale healthy hand images with imbalance-aware training to detect RA-related joint inflammation from RGB hand images. Our experiments demonstrated that the proposed approach improves F1-score by 0.2 points and Gmean by 0.25 points compared with the baseline model.