Three-dimensional (3D) reconstruction of ships is an important part of maritime monitoring, allowing improved visualization, inspection, and decision-making in real-world monitoring environments. However, most state-ofthe-art 3D reconstruction methods require multi-view supervision, annotated 3D ground truth, or are computationally intensive, making them impractical for real-time maritime deployment. In this work, we present an efficient pipeline for single-view 3D reconstruction of real ships by training entirely on synthetic data and requiring only a single view at inference. Our approach uses the Splatter Image network, which represents objects as sparse sets of 3D Gaussians for rapid and accurate reconstruction from single images. The model is first fine-tuned on synthetic ShapeNet vessels and further refined with a diverse custom dataset of 3D ships, bridging the domain gap between synthetic and real-world imagery. We integrate a state-of-the-art segmentation module based on YOLOv8 and custom preprocessing to ensure compatibility with the reconstruction network. Postprocessing steps include real-world scaling, centering, and orientation alignment, followed by georeferenced placement on an interactive web map using AIS metadata and homography-based mapping. Quantitative evaluation on synthetic validation data demonstrates strong reconstruction fidelity, while qualitative results on real maritime images from the ShipSG dataset confirm the potential for transfer to operational maritime settings. The final system provides interactive 3D inspection of real ships without requiring real-world 3D annotations. This pipeline provides an efficient, scalable solution for maritime monitoring and highlights a path toward real-time 3D ship visualization in practical applications. Interactive demo: https://dlr-mi.github.io/ship3d-demo/.
One-stage object detection, particularly the YOLO series, strikes a favorable balance between accuracy and efficiency. However, existing YOLO detectors lack explicit modeling of heterogeneous object responses within shared feature channels, which limits further performance gains. To address this, we propose YOLO-DS, a framework built around a novel Dual-Statistic Synergy Operator (DSO). The DSO decouples object features by jointly modeling the channel-wise mean and the peak-to-mean difference. Building upon the DSO, we design two lightweight gating modules: the Dual-Statistic Synergy Gating (DSG) module for adaptive channel-wise feature selection, and the Multi-Path Segmented Gating (MSG) module for depth-wise feature weighting. On the MS-COCO benchmark, YOLO-DS consistently outperforms YOLOv8 across five model scales (N, S, M, L, X), achieving AP gains of 1.1% to 1.7% with only a minimal increase in inference latency. Extensive visualization, ablation, and comparative studies validate the effectiveness of our approach, demonstrating its superior capability in discriminating heterogeneous objects with high efficiency.
Adjusting rifle sights, a process commonly called "zeroing," requires shooters to identify and differentiate bullet holes from multiple firing iterations. Traditionally, this process demands physical inspection, introducing delays due to range safety protocols and increasing the risk of human error. We present an end-to-end computer vision system for automated bullet hole detection and iteration-based tracking directly from images taken at the firing line. Our approach combines YOLOv8 for accurate small-object detection with Intersection over Union (IoU) analysis to differentiate bullet holes across sequential images. To address the scarcity of labeled sequential data, we propose a novel data augmentation technique that removes rather than adds objects to simulate realistic firing sequences. Additionally, we introduce a preprocessing pipeline that standardizes target orientation using ORB-based perspective correction, improving model accuracy. Our system achieves 97.0% mean average precision on bullet hole detection and 88.8% accuracy in assigning bullet holes to the correct firing iteration. While designed for rifle zeroing, this framework offers broader applicability in domains requiring the temporal differentiation of visually similar objects.
Cervical spine fractures are critical medical conditions requiring precise and efficient detection for effective clinical management. This study explores the viability of 2D projection-based vertebra segmentation for vertebra-level fracture detection in 3D CT volumes, presenting an end-to-end pipeline for automated analysis of cervical vertebrae (C1-C7). By approximating a 3D volume through optimized 2D axial, sagittal, and coronal projections, regions of interest are identified using the YOLOv8 model from all views and combined to approximate the 3D cervical spine area, achieving a 3D mIoU of 94.45 percent. This projection-based localization strategy reduces computational complexity compared to traditional 3D segmentation methods while maintaining high performance. It is followed by a DenseNet121-Unet-based multi-label segmentation leveraging variance- and energy-based projections, achieving a Dice score of 87.86 percent. Strategic approximation of 3D vertebral masks from these 2D segmentation masks enables the extraction of individual vertebra volumes. The volumes are analyzed for fractures using an ensemble of 2.5D Spatio-Sequential models incorporating both raw slices and projections per vertebra for complementary evaluation. This ensemble achieves vertebra-level and patient-level F1 scores of 68.15 and 82.26, and ROC-AUC scores of 91.62 and 83.04, respectively. We further validate our approach through an explainability study that provides saliency map visualizations highlighting anatomical regions relevant for diagnosis, and an interobserver variability analysis comparing our model's performance with expert radiologists, demonstrating competitive results.
The growing number of differently-abled and elderly individuals demands affordable, intelligent wheelchairs that combine safe navigation with health monitoring. Traditional wheelchairs lack dynamic features, and many smart alternatives remain costly, single-modality, and limited in health integration. Motivated by the pressing demand for advanced, personalized, and affordable assistive technologies, we propose a comprehensive AI-IoT based smart wheelchair system that incorporates glove-based gesture control for hands-free navigation, real-time object detection using YOLOv8 with auditory feedback for obstacle avoidance, and ultrasonic for immediate collision avoidance. Vital signs (heart rate, SpO$_2$, ECG, temperature) are continuously monitored, uploaded to ThingSpeak, and trigger email alerts for critical conditions. Built on a modular and low-cost architecture, the gesture control achieved a 95.5\% success rate, ultrasonic obstacle detection reached 94\% accuracy, and YOLOv8-based object detection delivered 91.5\% Precision, 90.2\% Recall, and a 90.8\% F1-score. This integrated, multi-modal approach offers a practical, scalable, and affordable solution, significantly enhancing user autonomy, safety, and independence by bridging the gap between innovative research and real-world deployment.
Large-scale livestock operations pose significant risks to human health and the environment, while also being vulnerable to threats such as infectious diseases and extreme weather events. As the number of such operations continues to grow, accurate and scalable mapping has become increasingly important. In this work, we present an infrastructure-first, explainable pipeline for identifying and characterizing Concentrated Animal Feeding Operations (CAFOs) from aerial and satellite imagery. Our method (1) detects candidate infrastructure (e.g., barns, feedlots, manure lagoons, silos) with a domain-tuned YOLOv8 detector, then derives SAM2 masks from these boxes and filters component-specific criteria, (2) extracts structured descriptors (e.g., counts, areas, orientations, and spatial relations) and fuses them with deep visual features using a lightweight spatial cross-attention classifier, and (3) outputs both CAFO type predictions and mask-level attributions that link decisions to visible infrastructure. Through comprehensive evaluation, we show that our approach achieves state-of-the-art performance, with Swin-B+PRISM-CAFO surpassing the best performing baseline by up to 15\%. Beyond strong predictive performance across diverse U.S. regions, we run systematic gradient--activation analyses that quantify the impact of domain priors and show ho
The demand for real-time visual understanding and interaction in complex scenarios is increasingly critical for unmanned aerial vehicles. However, a significant challenge arises from the contradiction between the high computational cost of large Vision language models and the limited computing resources available on UAV edge devices. To address this challenge, this paper proposes a lightweight multimodal task platform based on BLIP-2, integrated with YOLO-World and YOLOv8-Seg models. This integration extends the multi-task capabilities of BLIP-2 for UAV applications with minimal adaptation and without requiring task-specific fine-tuning on drone data. Firstly, the deep integration of BLIP-2 with YOLO models enables it to leverage the precise perceptual results of YOLO for fundamental tasks like object detection and instance segmentation, thereby facilitating deeper visual-attention understanding and reasoning. Secondly, a content-aware key frame sampling mechanism based on K-Means clustering is designed, which incorporates intelligent frame selection and temporal feature concatenation. This equips the lightweight BLIP-2 architecture with the capability to handle video-level interactive tasks effectively. Thirdly, a unified prompt optimization scheme for multi-task adaptation is implemented. This scheme strategically injects structured event logs from the YOLO models as contextual information into BLIP-2's input. Combined with output constraints designed to filter out technical details, this approach effectively guides the model to generate accurate and contextually relevant outputs for various tasks.
Objectives: To overcome challenges in diagnosing pericoronitis on panoramic radiographs, an AI-assisted assessment system integrating anatomical localization, pathological classification, and interpretability. Methods: A two-stage deep learning pipeline was implemented. The first stage used YOLOv8 to detect third molars and classify their anatomical positions and angulations based on Winter's classification. Detected regions were then fed into a second-stage classifier, a modified ResNet-50 architecture, for detecting radiographic features suggestive of pericoronitis. To enhance clinical trust, Grad-CAM was used to highlight key diagnostic regions on the radiographs. Results: The YOLOv8 component achieved 92% precision and 92.5% mean average precision. The ResNet-50 classifier yielded F1-scores of 88% for normal cases and 86% for pericoronitis. Radiologists reported 84% alignment between Grad-CAM and their diagnostic impressions, supporting the radiographic relevance of the interpretability output. Conclusion: The system shows strong potential for AI-assisted panoramic assessment, with explainable AI features that support clinical confidence.
This paper presents the Sesame Plant Segmentation Dataset, an open source annotated image dataset designed to support the development of artificial intelligence models for agricultural applications, with a specific focus on sesame plants. The dataset comprises 206 training images, 43 validation images, and 43 test images in YOLO compatible segmentation format, capturing sesame plants at early growth stages under varying environmental conditions. Data were collected using a high resolution mobile camera from farms in Jirdede, Daura Local Government Area, Katsina State, Nigeria, and annotated using the Segment Anything Model version 2 with farmer supervision. Unlike conventional bounding box datasets, this dataset employs pixel level segmentation to enable more precise detection and analysis of sesame plants in real world farm settings. Model evaluation using the Ultralytics YOLOv8 framework demonstrated strong performance for both detection and segmentation tasks. For bounding box detection, the model achieved a recall of 79 percent, precision of 79 percent, mean average precision at IoU 0.50 of 84 percent, and mean average precision from 0.50 to 0.95 of 58 percent. For segmentation, it achieved a recall of 82 percent, precision of 77 percent, mean average precision at IoU 0.50 of 84 percent, and mean average precision from 0.50 to 0.95 of 52 percent. The dataset represents a novel contribution to sesame focused agricultural vision datasets in Nigeria and supports applications such as plant monitoring, yield estimation, and agricultural research.
Speeding is a major contributor to road fatalities, particularly in developing countries such as Uganda, where road safety infrastructure is limited. This study proposes a real-time intelligent traffic surveillance system tailored to such regions, using computer vision techniques to address vehicle detection, license plate recognition, and speed estimation. The study collected a rich dataset using a speed gun, a Canon Camera, and a mobile phone to train the models. License plate detection using YOLOv8 achieved a mean average precision (mAP) of 97.9%. For character recognition of the detected license plate, the CNN model got a character error rate (CER) of 3.85%, while the transformer model significantly reduced the CER to 1.79%. Speed estimation used source and target regions of interest, yielding a good performance of 10 km/h margin of error. Additionally, a database was established to correlate user information with vehicle detection data, enabling automated ticket issuance via SMS via Africa's Talking API. This system addresses critical traffic management needs in resource-constrained environments and shows potential to reduce road accidents through automated traffic enforcement in developing countries where such interventions are urgently needed.