Abstract:Pet ownership is increasingly common in modern households, yet maintaining a consistent feeding schedule remains challenging for the owners particularly those who live in cities and have busy lifestyles. This paper presents the design, development, and validation of a low-cost, scalable GSM-IoT smart pet feeder that enables remote monitoring and control through cellular communication. The device combines with an Arduino microcontroller, a SIM800L GSM module for communication, an ultrasonic sensor for real-time food-level assessment, and a servo mechanism for accurate portion dispensing. A dedicated mobile application was developed using MIT App Inventor which allows owners to send feeding commands and receive real-time status updates. Experimental results demonstrate a 98\% SMS command success rate, consistent portion dispensing with $\pm 2.67$\% variance, and reliable autonomous operation. Its modular, energy-efficient design makes it easy to use in a wide range of households, including those with limited resources. This work pushes forward the field of accessible pet care technology by providing a practical, scalable, and completely internet-independent solution for personalized pet feeding. In doing so, it sets a new benchmark for low-cost, GSM-powered automation in smart pet products.
Abstract:Maintaining optimal water quality in aquariums is critical for aquatic health but remains challenging due to the need for continuous monitoring of multiple parameters. Traditional manual methods are inefficient, labor-intensive, and prone to human error, often leading to suboptimal aquatic conditions. This paper presents an IoT-based smart aquarium system that addresses these limitations by integrating an ESP32 microcontroller with multiple sensors (pH, TDS, temperature, turbidity) and actuators (servo feeder, water pump) for comprehensive real-time water quality monitoring and automated control. The system architecture incorporates edge processing capabilities, cloud connectivity via Blynk IoT platform, and an intelligent alert mechanism with configurable cooldown periods to prevent notification fatigue. Experimental evaluation in a 10-liter aquarium environment demonstrated the system's effectiveness, achieving 96\% average sensor accuracy and 1.2-second response time for anomaly detection. The automated feeding and water circulation modules maintained 97\% operational reliability throughout extended testing, significantly reducing manual intervention while ensuring stable aquatic conditions. This research demonstrates that cost-effective IoT solutions can revolutionize aquarium maintenance, making aquatic ecosystem management more accessible, reliable, and efficient for both residential and commercial applications.