Video emotion recognition is the process of recognizing emotions from facial expressions and body language in videos.
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
Humans often experience not just a single basic emotion at a time, but rather a blend of several emotions with varying salience. Despite the importance of such blended emotions, most video-based emotion recognition approaches are designed to recognize single emotions only. The few approaches that have attempted to recognize blended emotions typically cannot assess the relative salience of the emotions within a blend. This limitation largely stems from the lack of datasets containing a substantial number of blended emotion samples annotated with relative salience. To address this shortcoming, we introduce BLEMORE, a novel dataset for multimodal (video, audio) blended emotion recognition that includes information on the relative salience of each emotion within a blend. BLEMORE comprises over 3,000 clips from 58 actors, performing 6 basic emotions and 10 distinct blends, where each blend has 3 different salience configurations (50/50, 70/30, and 30/70). Using this dataset, we conduct extensive evaluations of state-of-the-art video classification approaches on two blended emotion prediction tasks: (1) predicting the presence of emotions in a given sample, and (2) predicting the relative salience of emotions in a blend. Our results show that unimodal classifiers achieve up to 29% presence accuracy and 13% salience accuracy on the validation set, while multimodal methods yield clear improvements, with ImageBind + WavLM reaching 35% presence accuracy and HiCMAE 18% salience accuracy. On the held-out test set, the best models achieve 33% presence accuracy (VideoMAEv2 + HuBERT) and 18% salience accuracy (HiCMAE). In sum, the BLEMORE dataset provides a valuable resource to advancing research on emotion recognition systems that account for the complexity and significance of blended emotion expressions.
Micro-gesture recognition and behavior-based emotion prediction are both highly challenging tasks that require modeling subtle, fine-grained human behaviors, primarily leveraging video and skeletal pose data. In this work, we present two multimodal frameworks designed to tackle both problems on the iMiGUE dataset. For micro-gesture classification, we explore the complementary strengths of RGB and 3D pose-based representations to capture nuanced spatio-temporal patterns. To comprehensively represent gestures, video, and skeletal embeddings are extracted using MViTv2-S and 2s-AGCN, respectively. Then, they are integrated through a Cross-Modal Token Fusion module to combine spatial and pose information. For emotion recognition, our framework extends to behavior-based emotion prediction, a binary classification task identifying emotional states based on visual cues. We leverage facial and contextual embeddings extracted using SwinFace and MViTv2-S models and fuse them through an InterFusion module designed to capture emotional expressions and body gestures. Experiments conducted on the iMiGUE dataset, within the scope of the MiGA 2025 Challenge, demonstrate the robust performance and accuracy of our method in the behavior-based emotion prediction task, where our approach secured 2nd place.
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER
Recognition of signers' emotions suffers from one theoretical challenge and one practical challenge, namely, the overlap between grammatical and affective facial expressions and the scarcity of data for model training. This paper addresses these two challenges in a cross-lingual setting using our eJSL dataset, a new benchmark dataset for emotion recognition in Japanese Sign Language signers, and BOBSL, a large British Sign Language dataset with subtitles. In eJSL, two signers expressed 78 distinct utterances with each of seven different emotional states, resulting in 1,092 video clips. We empirically demonstrate that 1) textual emotion recognition in spoken language mitigates data scarcity in sign language, 2) temporal segment selection has a significant impact, and 3) incorporating hand motion enhances emotion recognition in signers. Finally we establish a stronger baseline than spoken language LLMs.
In this work we present SignIT, a new dataset to study the task of Italian Sign Language (LIS) recognition. The dataset is composed of 644 videos covering 3.33 hours. We manually annotated videos considering a taxonomy of 94 distinct sign classes belonging to 5 macro-categories: Animals, Food, Colors, Emotions and Family. We also extracted 2D keypoints related to the hands, face and body of the users. With the dataset, we propose a benchmark for the sign recognition task, adopting several state-of-the-art models showing how temporal information, 2D keypoints and RGB frames can be influence the performance of these models. Results show the limitations of these models on this challenging LIS dataset. We release data and annotations at the following link: https://fpv-iplab.github.io/SignIT/.
Recent text-to-video generation models exhibit remarkable progress in visual realism, motion fidelity, and text-video alignment, yet they remain fundamentally limited in their ability to generate socially coherent behavior. Unlike humans, who effortlessly infer intentions, beliefs, emotions, and social norms from brief visual cues, current models tend to render literal scenes without capturing the underlying causal or psychological logic. To systematically evaluate this gap, we introduce the first benchmark for social reasoning in video generation. Grounded in findings from developmental and social psychology, our benchmark organizes thirty classic social cognition paradigms into seven core dimensions, including mental-state inference, goal-directed action, joint attention, social coordination, prosocial behavior, social norms, and multi-agent strategy. To operationalize these paradigms, we develop a fully training-free agent-based pipeline that (i) distills the reasoning mechanism of each experiment, (ii) synthesizes diverse video-ready scenarios, (iii) enforces conceptual neutrality and difficulty control through cue-based critique, and (iv) evaluates generated videos using a high-capacity VLM judge across five interpretable dimensions of social reasoning. Using this framework, we conduct the first large-scale study across seven state-of-the-art video generation systems. Our results reveal substantial performance gaps: while modern models excel in surface-level plausibility, they systematically fail in intention recognition, belief reasoning, joint attention, and prosocial inference.
Emotion Recognition (ER) is the process of analyzing and identifying human emotions from sensing data. Currently, the field heavily relies on facial expression recognition (FER) because visual channel conveys rich emotional cues. However, facial expressions are often used as social tools rather than manifestations of genuine inner emotions. To understand and bridge this gap between FER and ER, we introduce eye behaviors as an important emotional cue and construct an Eye-behavior-aided Multimodal Emotion Recognition (EMER) dataset. To collect data with genuine emotions, spontaneous emotion induction paradigm is exploited with stimulus material, during which non-invasive eye behavior data, like eye movement sequences and eye fixation maps, is captured together with facial expression videos. To better illustrate the gap between ER and FER, multi-view emotion labels for mutimodal ER and FER are separately annotated. Furthermore, based on the new dataset, we design a simple yet effective Eye-behavior-aided MER Transformer (EMERT) that enhances ER by bridging the emotion gap. EMERT leverages modality-adversarial feature decoupling and a multitask Transformer to model eye behaviors as a strong complement to facial expressions. In the experiment, we introduce seven multimodal benchmark protocols for a variety of comprehensive evaluations of the EMER dataset. The results show that the EMERT outperforms other state-of-the-art multimodal methods by a great margin, revealing the importance of modeling eye behaviors for robust ER. To sum up, we provide a comprehensive analysis of the importance of eye behaviors in ER, advancing the study on addressing the gap between FER and ER for more robust ER performance. Our EMER dataset and the trained EMERT models will be publicly available at https://github.com/kejun1/EMER.
Understanding emotional responses in children with Autism Spectrum Disorder (ASD) during social interaction remains a critical challenge in both developmental psychology and human-robot interaction. This study presents a novel deep learning pipeline for emotion recognition in autistic children in response to a name-calling event by a humanoid robot (NAO), under controlled experimental settings. The dataset comprises of around 50,000 facial frames extracted from video recordings of 15 children with ASD. A hybrid model combining a fine-tuned ResNet-50-based Convolutional Neural Network (CNN) and a three-layer Graph Convolutional Network (GCN) trained on both visual and geometric features extracted from MediaPipe FaceMesh landmarks. Emotions were probabilistically labeled using a weighted ensemble of two models: DeepFace's and FER, each contributing to soft-label generation across seven emotion classes. Final classification leveraged a fused embedding optimized via Kullback-Leibler divergence. The proposed method demonstrates robust performance in modeling subtle affective responses and offers significant promise for affective profiling of ASD children in clinical and therapeutic human-robot interaction contexts, as the pipeline effectively captures micro emotional cues in neurodivergent children, addressing a major gap in autism-specific HRI research. This work represents the first such large-scale, real-world dataset and pipeline from India on autism-focused emotion analysis using social robotics, contributing an essential foundation for future personalized assistive technologies.
Dynamic facial expression recognition (DFER) aims to identify emotional states by modeling the temporal changes in facial movements across video sequences. A key challenge in DFER is the many-to-one labeling problem, where a video composed of numerous frames is assigned a single emotion label. A common strategy to mitigate this issue is to formulate DFER as a Multiple Instance Learning (MIL) problem. However, MIL-based approaches inherently suffer from the visual diversity of emotional expressions and the complexity of temporal dynamics. To address this challenge, we propose TG-DFER, a text-guided weakly supervised framework that enhances MIL-based DFER by incorporating semantic guidance and coherent temporal modeling. We incorporate a vision-language pre-trained (VLP) model is integrated to provide semantic guidance through fine-grained textual descriptions of emotional context. Furthermore, we introduce visual prompts, which align enriched textual emotion labels with visual instance features, enabling fine-grained reasoning and frame-level relevance estimation. In addition, a multi-grained temporal network is designed to jointly capture short-term facial dynamics and long-range emotional flow, ensuring coherent affective understanding across time. Extensive results demonstrate that TG-DFER achieves improved generalization, interpretability, and temporal sensitivity under weak supervision.