End-to-end prediction of high-order crystal tensor properties from atomic structures remains challenging: while spherical-harmonic equivariant models are expressive, their Clebsch-Gordan tensor products incur substantial compute and memory costs for higher-order targets. We propose the Cartesian Environment Interaction Tensor Network (CEITNet), an approach that constructs a multi-channel Cartesian local environment tensor for each atom and performs flexible many-body mixing via a learnable channel-space interaction. By performing learning in channel space and using Cartesian tensor bases to assemble equivariant outputs, CEITNet enables efficient construction of high-order tensor. Across benchmark datasets for order-2 dielectric, order-3 piezoelectric, and order-4 elastic tensor prediction, CEITNet surpasses prior high-order prediction methods on key accuracy criteria while offering high computational efficiency.
Large language models are limited in deployment by GPU memory and inference latency. We present Minima, a production compression pipeline that learns where and how to structurally compress a Transformer and turns that compression into real serving gains. Minima trains a lightweight convolutional predictor to estimate layer- and patch-level sensitivity, applies a mixture of Tucker, tensor-train, and tensor-ring decompositions to low-sensitivity regions, performs a short healing fine-tune, and executes the resulting operators with custom Triton and CUDA kernels. The reduced memory footprint enables speculative decoding with a small draft model and a larger verifier. On Qwen3-32B at an 8k-token context window, Minima reduces peak VRAM from 64 GiB to 40 GiB. For a single active request, throughput increases from 40 tokens per second (baseline) to 50 tokens per second (Minima) and 75 tokens per second (Minima with speculative decoding). Under 50 parallel requests, throughput is 34, 44, and 53 tokens per second respectively, showing that Minima remains effective under high concurrency even when speculative decoding gains compress. We position Minima relative to recent tensor-network, low-rank plus quantization, and cross-layer sharing methods, and argue that it is a practical step toward more aggressive structural compression via shared tensor backbones with tiny per-layer adapters.
Underwater Camouflaged Object Detection (UCOD) is a challenging task due to the extreme visual similarity between targets and backgrounds across varying marine depths. Existing methods often struggle with topological fragmentation of slender creatures in the deep sea and the subtle feature extraction of transparent organisms. In this paper, we propose DeepTopo-Net, a novel framework that integrates topology-aware modeling with frequency-decoupled perception. To address physical degradation, we design the Water-Conditioned Adaptive Perceptor (WCAP), which employs Riemannian metric tensors to dynamically deform convolutional sampling fields. Furthermore, the Abyssal-Topology Refinement Module (ATRM) is developed to maintain the structural connectivity of spindly targets through skeletal priors. Specifically, we first introduce GBU-UCOD, the first high-resolution (2K) benchmark tailored for marine vertical zonation, filling the data gap for hadal and abyssal zones. Extensive experiments on MAS3K, RMAS, and our proposed GBU-UCOD datasets demonstrate that DeepTopo-Net achieves state-of-the-art performance, particularly in preserving the morphological integrity of complex underwater patterns. The datasets and codes will be released at https://github.com/Wuwenji18/GBU-UCOD.
Deep neural networks (DNNs) have become indispensable in many real-life applications like natural language processing, and autonomous systems. However, deploying DNNs on resource-constrained devices, e.g., in RISC-V platforms, remains challenging due to the high computational and memory demands of fully connected (FC) layers, which dominate resource consumption. Low-rank factorization (LRF) offers an effective approach to compressing FC layers, but the vast design space of LRF solutions involves complex trade-offs among FLOPs, memory size, inference time, and accuracy, making the LRF process complex and time-consuming. This paper introduces an end-to-end LRF design space exploration methodology and a specialized design tool for optimizing FC layers on RISC-V processors. Using Tensor Train Decomposition (TTD) offered by TensorFlow T3F library, the proposed work prunes the LRF design space by excluding first, inefficient decomposition shapes and second, solutions with poor inference performance on RISC-V architectures. Compiler optimizations are then applied to enhance custom T3F layer performance, minimizing inference time and boosting computational efficiency. On average, our TT-decomposed layers run 3x faster than IREE and 8x faster than Pluto on the same compressed model. This work provides an efficient solution for deploying DNNs on edge and embedded devices powered by RISC-V architectures.
The expanding scale of neural networks poses a major challenge for distributed machine learning, particularly under limited communication resources. While split learning (SL) alleviates client computational burden by distributing model layers between clients and server, it incurs substantial communication overhead from frequent transmission of intermediate activations and gradients. To tackle this issue, we propose NSC-SL, a bandwidth-aware adaptive compression algorithm for communication-efficient SL. NSC-SL first dynamically determines the optimal rank of low-rank approximation based on the singular value distribution for adapting real-time bandwidth constraints. Then, NSC-SL performs error-compensated tensor factorization using alternating orthogonal iteration with residual feedback, effectively minimizing truncation loss. The collaborative mechanisms enable NSC-SL to achieve high compression ratios while preserving semantic-rich information essential for convergence. Extensive experiments demonstrate the superb performance of NSC-SL.
Sparse autoencoders (SAEs) have emerged as a promising method for interpreting neural network representations by decomposing activations into sparse combinations of dictionary atoms. However, SAEs assume that features combine additively through linear reconstruction, an assumption that cannot capture compositional structure: linear models cannot distinguish whether "Starbucks" arises from the composition of "star" and "coffee" features or merely their co-occurrence. This forces SAEs to allocate monolithic features for compound concepts rather than decomposing them into interpretable constituents. We introduce PolySAE, which extends the SAE decoder with higher-order terms to model feature interactions while preserving the linear encoder essential for interpretability. Through low-rank tensor factorization on a shared projection subspace, PolySAE captures pairwise and triple feature interactions with small parameter overhead (3% on GPT2). Across four language models and three SAE variants, PolySAE achieves an average improvement of approximately 8% in probing F1 while maintaining comparable reconstruction error, and produces 2-10$\times$ larger Wasserstein distances between class-conditional feature distributions. Critically, learned interaction weights exhibit negligible correlation with co-occurrence frequency ($r = 0.06$ vs. $r = 0.82$ for SAE feature covariance), suggesting that polynomial terms capture compositional structure, such as morphological binding and phrasal composition, largely independent of surface statistics.
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
Hybrid quantum-classical learning models increasingly integrate neural networks with variational quantum circuits (VQCs) to exploit complementary inductive biases. However, many existing approaches rely on tightly coupled architectures or task-specific encoders, limiting conceptual clarity, generality, and transferability across learning settings. In this work, we introduce Quantum LEGO Learning, a modular and architecture-agnostic learning framework that treats classical and quantum components as reusable, composable learning blocks with well-defined roles. Within this framework, a pre-trained classical neural network serves as a frozen feature block, while a VQC acts as a trainable adaptive module that operates on structured representations rather than raw inputs. This separation enables efficient learning under constrained quantum resources and provides a principled abstraction for analyzing hybrid models. We develop a block-wise generalization theory that decomposes learning error into approximation and estimation components, explicitly characterizing how the complexity and training status of each block influence overall performance. Our analysis generalizes prior tensor-network-specific results and identifies conditions under which quantum modules provide representational advantages over comparably sized classical heads. Empirically, we validate the framework through systematic block-swap experiments across frozen feature extractors and both quantum and classical adaptive heads. Experiments on quantum dot classification demonstrate stable optimization, reduced sensitivity to qubit count, and robustness to realistic noise.
Neural networks and machine learning models for uncertainty quantification suffer from limited scalability and poor reliability compared to their deterministic counterparts. In industry-scale active learning settings, where generating a single high-fidelity simulation may require days or weeks of computation and produce data volumes on the order of gigabytes, they quickly become impractical. This paper proposes a scalable and reliable Bayesian surrogate model, termed the Bayesian Interpolating Neural Network (B-INN). The B-INN combines high-order interpolation theory with tensor decomposition and alternating direction algorithm to enable effective dimensionality reduction without compromising predictive accuracy. We theoretically show that the function space of a B-INN is a subset of that of Gaussian processes, while its Bayesian inference exhibits linear complexity, $\mathcal{O}(N)$, with respect to the number of training samples. Numerical experiments demonstrate that B-INNs can be from 20 times to 10,000 times faster with a robust uncertainty estimation compared to Bayesian neural networks and Gaussian processes. These capabilities make B-INN a practical foundation for uncertainty-driven active learning in large-scale industrial simulations, where computational efficiency and robust uncertainty calibration are paramount.
Large language models (LLMs) exhibit strong generative capabilities but remain vulnerable to confabulations, fluent yet unreliable outputs that vary arbitrarily even under identical prompts. Leveraging a quantum tensor network based pipeline, we propose a quantum physics inspired uncertainty quantification framework that accounts for aleatoric uncertainty in token sequence probability for semantic equivalence based clustering of LLM generations. This offers a principled and interpretable scheme for hallucination detection. We further introduce an entropy maximization strategy that prioritizes high certainty, semantically coherent outputs and highlights entropy regions where LLM decisions are likely to be unreliable, offering practical guidelines for when human oversight is warranted. We evaluate the robustness of our scheme under different generation lengths and quantization levels, dimensions overlooked in prior studies, demonstrating that our approach remains reliable even in resource constrained deployments. A total of 116 experiments on TriviaQA, NQ, SVAMP, and SQuAD across multiple architectures including Mistral-7B, Mistral-7B-instruct, Falcon-rw-1b, LLaMA-3.2-1b, LLaMA-2-13b-chat, LLaMA-2-7b-chat, LLaMA-2-13b, and LLaMA-2-7b show consistent improvements in AUROC and AURAC over state of the art baselines.