Temporal Convolutional Networks


Temporal convolutional networks (TCNs) are deep learning models that use 1D convolutions for sequence modeling tasks.

TransLLM: A Unified Multi-Task Foundation Framework for Urban Transportation via Learnable Prompting

Add code
Aug 20, 2025
Viaarxiv icon

STM3: Mixture of Multiscale Mamba for Long-Term Spatio-Temporal Time-Series Prediction

Add code
Aug 17, 2025
Viaarxiv icon

UQGNN: Uncertainty Quantification of Graph Neural Networks for Multivariate Spatiotemporal Prediction

Add code
Aug 12, 2025
Viaarxiv icon

Improving OCR for Historical Texts of Multiple Languages

Add code
Aug 14, 2025
Viaarxiv icon

Landmark Guided Visual Feature Extractor for Visual Speech Recognition with Limited Resource

Add code
Aug 10, 2025
Viaarxiv icon

DeepFleet: Multi-Agent Foundation Models for Mobile Robots

Add code
Aug 12, 2025
Viaarxiv icon

Audio-Visual Speech Enhancement: Architectural Design and Deployment Strategies

Add code
Aug 11, 2025
Viaarxiv icon

Architecture-Aware Generalization Bounds for Temporal Networks: Theory and Fair Comparison Methodology

Add code
Aug 08, 2025
Viaarxiv icon

Salt-Rock Creep Deformation Forecasting Using Deep Neural Networks and Analytical Models for Subsurface Energy Storage Applications

Add code
Aug 07, 2025
Viaarxiv icon

Intrinsic Explainability of Multimodal Learning for Crop Yield Prediction

Add code
Aug 09, 2025
Viaarxiv icon