Abstract:This paper addresses a fundamental physical layer conflict in hybrid Wireless Sensor Networks (WSNs) between high-throughput primary communication and the stringent power envelope requirements of passive backscatter sensors. We propose a Backscatter-Constrained Transmit Antenna Selection (BC-TAS) framework, a per-subcarrier selection strategy for multi-antenna illuminators operating within a Multi-Dimensional Orthogonal Frequency Division Multiplexing (MD-OFDM) architecture. Unlike conventional signal-to-noise ratio (SNR) centric selection schemes, BC-TAS employs a multi-objective cost function that jointly maximizes desired link reliability, stabilizes the incident RF energy envelope at passive Surface Acoustic Wave (SAW) sensors, and suppresses interference toward coexisting victim receivers. By exploiting the inherent sparsity of MD-OFDM, the proposed framework enables dual-envelope regulation, simultaneously reducing the transmitter Peak-to-Average Power Ratio (PAPR) and the Backscatter Crest Factor (BCF) observed at the tag. To enhance robustness under imperfect Channel State Information (CSI), a Kalman-based channel smoothing mechanism is incorporated to maintain selection stability in low-SNR regimes. Numerical results using IEEE 802.11be dispersive channel models and a nonlinear Rapp power amplifier demonstrate that BC-TAS achieves orders-of-magnitude improvement in outage probability and significant gains in energy efficiency compared to conventional MU-MIMO baselines, while ensuring spectral mask compliance under reduced power amplifier back-off. These results establish BC-TAS as an effective illuminator-side control mechanism for enabling reliable and energy-stable sensing and communication coexistence in dense, power-constrained wireless environments.
Abstract:Accurate and real-time prediction of wireless channel conditions, particularly the Signal-to-Interference-plus-Noise Ratio (SINR), is a foundational requirement for enabling Ultra-Reliable Low-Latency Communication (URLLC) in highly dynamic Industry 4.0 environments. Traditional physics-based or statistical models fail to cope with the spatio-temporal complexities introduced by mobile obstacles and transient interference inherent to smart warehouses. To address this, we introduce Evo-WISVA (Evolutionary Wireless Infrastructure for Smart Warehouse using VAE), a novel synergistic deep learning architecture that functions as a lightweight 2D predictive digital twin of the radio environment. Evo-WISVA integrates a memory-augmented Variational Autoencoder (VAE) featuring an Attention-driven Latent Memory Module (LMM) for robust, context-aware spatial feature extraction, with a Convolutional Long Short-Term Memory (ConvLSTM) network for precise temporal forecasting and sequential refinement. The entire pipeline is optimized end-to-end via a joint loss function, ensuring optimal feature alignment between the generative and predictive components. Rigorous experimental evaluation conducted on a high-fidelity ns-3-generated industrial warehouse dataset demonstrates that Evo-WISVA significantly surpasses state-of-the-art baselines, achieving up to a 47.6\% reduction in average reconstruction error. Crucially, the model exhibits exceptional generalization capacity to unseen environments with vastly increased dynamic complexity (up to ten simultaneously moving obstacles) while maintaining amortized computational efficiency essential for real-time deployment. Evo-WISVA establishes a foundational technology for proactive wireless resource management, enabling autonomous optimization and advancing the realization of predictive digital twins in industrial communication networks.