Thompson sampling (TS) is widely used for stochastic multi-armed bandits, yet its inferential properties under adaptive data collection are subtle. Classical asymptotic theory for sample means can fail because arm-specific sample sizes are random and coupled with the rewards through the action-selection rule. We study this phenomenon in the $K$-armed Gaussian bandit and identify \emph{optimism} as a key mechanism for restoring \emph{stability}, a sufficient condition for valid asymptotic inference requiring each arm's pull count to concentrate around a deterministic scale. First, we prove that variance-inflated TS \citep{halder2025stable} is stable for any $K \ge 2$, including the challenging regime where multiple arms are optimal. This resolves the open question raised by \citet{halder2025stable} through extending their results from the two-armed setting to the general $K$-armed setting. Second, we analyze an alternative optimistic modification that keeps the posterior variance unchanged but adds an explicit mean bonus to posterior mean, and establish the same stability conclusion. In summary, suitably implemented optimism stabilizes Thompson sampling and enables asymptotically valid inference in multi-armed bandits, while incurring only a mild additional regret cost.
Pre-training Large Language Models (LLMs) on web-scale datasets becomes fundamental for advancing general-purpose AI. In contrast, enhancing their predictive performance on downstream tasks typically involves adapting their knowledge through fine-tuning. Parameter-efficient fine-tuning techniques, such as Low-Rank Adaptation (LoRA), aim to reduce the computational cost of this process by freezing the pre-trained model and updating a smaller number of parameters. In comparison to full fine-tuning, these methods achieve over 99\% reduction in trainable parameter count, depending on the configuration. Unfortunately, such a reduction may prove insufficient as LLMs continue to grow in scale. In this work, we address the previous problem by systematically selecting only a few layers to fine-tune using LoRA or its variants. We argue that not all layers contribute equally to the model adaptation. Leveraging this, we identify the most relevant layers to fine-tune by measuring their contribution to changes in internal representations. Our method is orthogonal to and readily compatible with existing low-rank adaptation techniques. We reduce the trainable parameters in LoRA-based techniques by up to 50\%, while maintaining the predictive performance across different models and tasks. Specifically, on encoder-only architectures, this reduction in trainable parameters leads to a negligible predictive performance drop on the GLUE benchmark. On decoder-only architectures, we achieve a small drop or even improvements in the predictive performance on mathematical problem-solving capabilities and coding tasks. Finally, this effectiveness extends to multimodal models, for which we also observe competitive results relative to fine-tuning with LoRA modules in all layers. Code is available at: https://github.com/c2d-usp/Layer-wise-LoRA-with-CKA
Semantic representations can be framed as a structured, dynamic knowledge space through which humans navigate to retrieve and manipulate meaning. To investigate how humans traverse this geometry, we introduce a framework that represents concept production as navigation through embedding space. Using different transformer text embedding models, we construct participant-specific semantic trajectories based on cumulative embeddings and extract geometric and dynamical metrics, including distance to next, distance to centroid, entropy, velocity, and acceleration. These measures capture both scalar and directional aspects of semantic navigation, providing a computationally grounded view of semantic representation search as movement in a geometric space. We evaluate the framework on four datasets across different languages, spanning different property generation tasks: Neurodegenerative, Swear verbal fluency, Property listing task in Italian, and in German. Across these contexts, our approach distinguishes between clinical groups and concept types, offering a mathematical framework that requires minimal human intervention compared to typical labor-intensive linguistic pre-processing methods. Comparison with a non-cumulative approach reveals that cumulative embeddings work best for longer trajectories, whereas shorter ones may provide too little context, favoring the non-cumulative alternative. Critically, different embedding models yielded similar results, highlighting similarities between different learned representations despite different training pipelines. By framing semantic navigation as a structured trajectory through embedding space, bridging cognitive modeling with learned representation, thereby establishing a pipeline for quantifying semantic representation dynamics with applications in clinical research, cross-linguistic analysis, and the assessment of artificial cognition.
Distribution shift is a common challenge in medical images obtained from different clinical centers, significantly hindering the deployment of pre-trained semantic segmentation models in real-world applications across multiple domains. Continual Test-Time Adaptation(CTTA) has emerged as a promising approach to address cross-domain shifts during continually evolving target domains. Most existing CTTA methods rely on incrementally updating model parameters, which inevitably suffer from error accumulation and catastrophic forgetting, especially in long-term adaptation. Recent prompt-tuning-based works have shown potential to mitigate the two issues above by updating only visual prompts. While these approaches have demonstrated promising performance, several limitations remain:1)lacking multi-scale prompt diversity, 2)inadequate incorporation of instance-specific knowledge, and 3)risk of privacy leakage. To overcome these limitations, we propose Multi-scale Global-Instance Prompt Tuning(MGIPT), to enhance scale diversity of prompts and capture both global- and instance-level knowledge for robust CTTA. Specifically, MGIPT consists of an Adaptive-scale Instance Prompt(AIP) and a Multi-scale Global-level Prompt(MGP). AIP dynamically learns lightweight and instance-specific prompts to mitigate error accumulation with adaptive optimal-scale selection mechanism. MGP captures domain-level knowledge across different scales to ensure robust adaptation with anti-forgetting capabilities. These complementary components are combined through a weighted ensemble approach, enabling effective dual-level adaptation that integrates both global and local information. Extensive experiments on medical image segmentation benchmarks demonstrate that our MGIPT outperforms state-of-the-art methods, achieving robust adaptation across continually changing target domains.
Hate speech detection is commonly framed as a direct binary classification problem despite being a composite concept defined through multiple interacting factors that vary across legal frameworks, platform policies, and annotation guidelines. As a result, supervised models often overfit dataset-specific definitions and exhibit limited robustness under domain shift and annotation noise. We introduce xList-Hate, a diagnostic framework that decomposes hate speech detection into a checklist of explicit, concept-level questions grounded in widely shared normative criteria. Each question is independently answered by a large language model (LLM), producing a binary diagnostic representation that captures hateful content features without directly predicting the final label. These diagnostic signals are then aggregated by a lightweight, fully interpretable decision tree, yielding transparent and auditable predictions. We evaluate it across multiple hate speech benchmarks and model families, comparing it against zero-shot LLM classification and in-domain supervised fine-tuning. While supervised methods typically maximize in-domain performance, we consistently improves cross-dataset robustness and relative performance under domain shift. In addition, qualitative analysis of disagreement cases provides evidence that the framework can be less sensitive to certain forms of annotation inconsistency and contextual ambiguity. Crucially, the approach enables fine-grained interpretability through explicit decision paths and factor-level analysis. Our results suggest that reframing hate speech detection as a diagnostic reasoning task, rather than a monolithic classification problem, provides a robust, explainable, and extensible alternative for content moderation.
Task-oriented handovers (TOH) are fundamental to effective human-robot collaboration, requiring robots to present objects in a way that supports the human's intended post-handover use. Existing approaches are typically based on object- or task-specific affordances, but their ability to generalize to novel scenarios is limited. To address this gap, we present AFT-Handover, a framework that integrates large language model (LLM)-driven affordance reasoning with efficient texture-based affordance transfer to achieve zero-shot, generalizable TOH. Given a novel object-task pair, the method retrieves a proxy exemplar from a database, establishes part-level correspondences via LLM reasoning, and texturizes affordances for feature-based point cloud transfer. We evaluate AFT-Handover across diverse task-object pairs, showing improved handover success rates and stronger generalization compared to baselines. In a comparative user study, our framework is significantly preferred over the current state-of-the-art, effectively reducing human regrasping before tool use. Finally, we demonstrate TOH on legged manipulators, highlighting the potential of our framework for real-world robot-human handovers.
Muon updates matrix parameters via the matrix sign of the gradient and has shown strong empirical gains, yet its dynamics and scaling behavior remain unclear in theory. We study Muon in a linear associative memory model with softmax retrieval and a hierarchical frequency spectrum over query-answer pairs, with and without label noise. In this setting, we show that Gradient Descent (GD) learns frequency components at highly imbalanced rates, leading to slow convergence bottlenecked by low-frequency components. In contrast, the Muon optimizer mitigates this imbalance, leading to faster and more uniform progress. Specifically, in the noiseless case, Muon achieves an exponential speedup over GD; in the noisy case with a power-decay frequency spectrum, we derive Muon's optimization scaling law and demonstrate its superior scaling efficiency over GD. Furthermore, we show that Muon can be interpreted as an implicit matrix preconditioner arising from adaptive task alignment and block-symmetric gradient structure. In contrast, the preconditioner with coordinate-wise sign operator could match Muon under oracle access to unknown task representations, which is infeasible for SignGD in practice. Experiments on synthetic long-tail classification and LLaMA-style pre-training corroborate the theory.
This study introduces a novel approach for estimating plane-wave coefficients in sound field reconstruction, specifically addressing challenges posed by error-in-variable phase perturbations. Such systematic errors typically arise from sensor mis-calibration, including uncertainties in sensor positions and response characteristics, leading to measurement-induced phase shifts in plane wave coefficients. Traditional methods often result in biased estimates or non-convex solutions. To overcome these issues, we propose an optimal transport (OT) framework. This framework operates on a set of lifted non-negative measures that correspond to observation-dependent shifted coefficients relative to the unperturbed ones. By applying OT, the supports of the measures are transported toward an optimal average in the phase space, effectively morphing them into an indistinguishable state. This optimal average, known as barycenter, is linked to the estimated plane-wave coefficients using the same lifting rule. The framework addresses the ill-posed nature of the problem, due to the large number of plane waves, by adding a constant to the ground cost, ensuring the sparsity of the transport matrix. Convex consistency of the solution is maintained. Simulation results confirm that our proposed method provides more accurate coefficient estimations compared to baseline approaches in scenarios with both additive noise and phase perturbations.
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
Most existing robust fitting methods are designed for classical models, such as lines, circles, and planes. In contrast, fewer methods have been developed to robustly handle non-classical models, such as spiral curves, procedural character models, and free-form surfaces. Furthermore, existing methods primarily focus on reconstructing a single instance of a non-classical model. This paper aims to reconstruct multiple instances of non-classical models from noisy data. We formulate this multi-instance fitting task as an optimization problem, which comprises an estimator and an optimizer. Specifically, we propose a novel estimator based on the model-to-data error, capable of handling outliers without a predefined error threshold. Since the proposed estimator is non-differentiable with respect to the model parameters, we employ a meta-heuristic algorithm as the optimizer to seek the global optimum. The effectiveness of our method are demonstrated through experimental results on various non-classical models. The code is available at https://github.com/zhangzongliang/fitting.