Accurate and timely seizure detection from Electroencephalography (EEG) is critical for clinical intervention, yet manual review of long-term recordings is labor-intensive. Recent efforts to encode EEG signals into large language models (LLMs) show promise in handling neural signals across diverse patients, but two significant challenges remain: (1) multi-channel heterogeneity, as seizure-relevant information varies substantially across EEG channels, and (2) computing inefficiency, as the EEG signals need to be encoded into a massive number of tokens for the prediction. To address these issues, we draw the EEG signal and propose the novel NeuroCanvas framework. Specifically, NeuroCanvas consists of two modules: (i) The Entropy-guided Channel Selector (ECS) selects the seizure-relevant channels input to LLM and (ii) the following Canvas of Neuron Signal (CNS) converts selected multi-channel heterogeneous EEG signals into structured visual representations. The ECS module alleviates the multi-channel heterogeneity issue, and the CNS uses compact visual tokens to represent the EEG signals that improve the computing efficiency. We evaluate NeuroCanvas across multiple seizure detection datasets, demonstrating a significant improvement of $20\%$ in F1 score and reductions of $88\%$ in inference latency. These results highlight NeuroCanvas as a scalable and effective solution for real-time and resource-efficient seizure detection in clinical practice.The code will be released at https://github.com/Yanchen30247/seizure_detect.
Recent electroencephalography (EEG) spatial super-resolution (SR) methods, while showing improved quality by either directly predicting missing signals from visible channels or adapting latent diffusion-based generative modeling to temporal data, often lack awareness of physiological spatial structure, thereby constraining spatial generation performance. To address this issue, we introduce TopoDiff, a geometry- and relation-aware diffusion model for EEG spatial super-resolution. Inspired by how human experts interpret spatial EEG patterns, TopoDiff incorporates topology-aware image embeddings derived from EEG topographic representations to provide global geometric context for spatial generation, together with a dynamic channel-relation graph that encodes inter-electrode relationships and evolves with temporal dynamics. This design yields a spatially grounded EEG spatial super-resolution framework with consistent performance improvements. Across multiple EEG datasets spanning diverse applications, including SEED/SEED-IV for emotion recognition, PhysioNet motor imagery (MI/MM), and TUSZ for seizure detection, our method achieves substantial gains in generation fidelity and leads to notable improvements in downstream EEG task performance.
Emergent phenomena -- onset of epileptic seizures, sudden customer churn, or pandemic outbreaks -- often arise from hidden causal interactions in complex systems. We propose a machine learning method for their early detection that addresses a core challenge: unveiling and harnessing a system's latent causal structure despite the data-generating process being unknown and partially observed. The method learns an optimal feature representation from a one-parameter family of estimators -- powers of the empirical covariance or precision matrix -- offering a principled way to tune in to the underlying structure driving the emergence of critical events. A supervised learning module then classifies the learned representation. We prove structural consistency of the family and demonstrate the empirical soundness of our approach on seizure detection and churn prediction, attaining competitive results in both. Beyond prediction, and toward explainability, we ascertain that the optimal covariance power exhibits evidence of good identifiability while capturing structural signatures, thus reconciling predictive performance with interpretable statistical structure.
Electroencephalogram (EEG) decoding is a critical component of medical diagnostics, rehabilitation engineering, and brain-computer interfaces. However, contemporary decoding methodologies remain heavily dependent on task-specific datasets to train specialized neural network architectures. Consequently, limited data availability impedes the development of generalizable large brain decoding models. In this work, we propose a paradigm shift from conventional signal-based decoding by leveraging large-scale vision-language models (VLMs) to analyze EEG waveform plots. By converting multivariate EEG signals into stacked waveform images and integrating neuroscience domain expertise into textual prompts, we demonstrate that foundational VLMs can effectively differentiate between different patterns in the human brain. To address the inherent non-stationarity of EEG signals, we introduce a Retrieval-Augmented In-Context Learning (RAICL) approach, which dynamically selects the most representative and relevant few-shot examples to condition the autoregressive outputs of the VLM. Experiments on EEG-based seizure detection indicate that state-of-the-art VLMs under RAICL achieved better or comparable performance with traditional time series based approaches. These findings suggest a new direction in physiological signal processing that effectively bridges the modalities of vision, language, and neural activities. Furthermore, the utilization of off-the-shelf VLMs, without the need for retraining or downstream architecture construction, offers a readily deployable solution for clinical applications.
Epilepsy is a chronic neurological disorder marked by recurrent seizures that can severely impact quality of life. Electroencephalography (EEG) remains the primary tool for monitoring neural activity and detecting seizures, yet automated analysis remains challenging due to the temporal complexity of EEG signals. This study introduces ConvMambaNet, a hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with the Mamba Structured State Space Model (SSM) to enhance temporal feature extraction. By embedding the Mamba-SSM block within a CNN framework, the model effectively captures both spatial and long-range temporal dynamics. Evaluated on the CHB-MIT Scalp EEG dataset, ConvMambaNet achieved a 99% accuracy and demonstrated robust performance under severe class imbalance. These results underscore the model's potential for precise and efficient seizure detection, offering a viable path toward real-time, automated epilepsy monitoring in clinical environments.
The quality of data augmentation serves as a critical determinant for the performance of contrastive learning in EEG tasks. Although this paradigm is promising for utilizing unlabeled data, static or random augmentation strategies often fail to preserve intrinsic information due to the non-stationarity of EEG signals where statistical properties change over time. To address this, we propose RL-BioAug, a framework that leverages a label-efficient reinforcement learning (RL) agent to autonomously determine optimal augmentation policies. While utilizing only a minimal fraction (10%) of labeled data to guide the agent's policy, our method enables the encoder to learn robust representations in a strictly self-supervised manner. Experimental results demonstrate that RL-BioAug significantly outperforms the random selection strategy, achieving substantial improvements of 9.69% and 8.80% in Macro-F1 score on the Sleep-EDFX and CHB-MIT datasets, respectively. Notably, this agent mainly chose optimal strategies for each task--for example, Time Masking with a 62% probability for sleep stage classification and Crop & Resize with a 77% probability for seizure detection. Our framework suggests its potential to replace conventional heuristic-based augmentations and establish a new autonomous paradigm for data augmentation. The source code is available at https://github.com/dlcjfgmlnasa/RL-BioAug.
A desirable property of any deployed artificial intelligence is generalization across domains, i.e. data generation distribution under a specific acquisition condition. In medical imagining applications the most coveted property for effective deployment is Single Domain Generalization (SDG), which addresses the challenge of training a model on a single domain to ensure it generalizes well to unseen target domains. In multi-center studies, differences in scanners and imaging protocols introduce domain shifts that exacerbate variability in rare class characteristics. This paper presents our experience on SDG in real life deployment for two exemplary medical imaging case studies on seizure onset zone detection using fMRI data, and stress electrocardiogram based coronary artery detection. Utilizing the commonly used application of diabetic retinopathy, we first demonstrate that state-of-the-art SDG techniques fail to achieve generalized performance across data domains. We then develop a generic expert knowledge integrated deep learning technique DL+EKE and instantiate it for the DR application and show that DL+EKE outperforms SOTA SDG methods on DR. We then deploy instances of DL+EKE technique on the two real world examples of stress ECG and resting state (rs)-fMRI and discuss issues faced with SDG techniques.
Automated seizure detection from electroencephalography (EEG) remains difficult due to the large variability of seizure dynamics across patients, recording conditions, and clinical settings. We introduce LookAroundNet, a transformer-based seizure detector that uses a wider temporal window of EEG data to model seizure activity. The seizure detector incorporates EEG signals before and after the segment of interest, reflecting how clinicians use surrounding context when interpreting EEG recordings. We evaluate the proposed method on multiple EEG datasets spanning diverse clinical environments, patient populations, and recording modalities, including routine clinical EEG and long-term ambulatory recordings, in order to study performance across varying data distributions. The evaluation includes publicly available datasets as well as a large proprietary collection of home EEG recordings, providing complementary views of controlled clinical data and unconstrained home-monitoring conditions. Our results show that LookAroundNet achieves strong performance across datasets, generalizes well to previously unseen recording conditions, and operates with computational costs compatible with real-world clinical deployment. The results indicate that extended temporal context, increased training data diversity, and model ensembling are key factors for improving performance. This work contributes to moving automatic seizure detection models toward clinically viable solutions.
Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures, affects over 50 million people worldwide, and poses significant risks, including sudden unexpected death in epilepsy (SUDEP). Conventional unimodal approaches, primarily reliant on electroencephalography (EEG), face several key challenges, including low SNR, nonstationarity, inter- and intrapatient heterogeneity, portability, and real-time applicability in clinical settings. To address these issues, a comprehensive survey highlights the concept of advanced multimodal learning for epileptic seizure detection and prediction (AMLSDP). The survey presents the evolution of epileptic seizure detection (ESD) and prediction (ESP) technologies across different eras. The survey also explores the core challenges of multimodal and non-EEG-based ESD and ESP. To overcome the key challenges of the multimodal system, the survey introduces the advanced processing strategies for efficient AMLSDP. Furthermore, this survey highlights future directions for researchers and practitioners. We believe this work will advance neurotechnology toward wearable and imaging-based solutions for epilepsy monitoring, serving as a valuable resource for future innovations in this domain.
The paper presents novel Universum-enhanced classifiers: the Universum Generalized Eigenvalue Proximal Support Vector Machine (U-GEPSVM) and the Improved U-GEPSVM (IU-GEPSVM) for EEG signal classification. Using the computational efficiency of generalized eigenvalue decomposition and the generalization benefits of Universum learning, the proposed models address critical challenges in EEG analysis: non-stationarity, low signal-to-noise ratio, and limited labeled data. U-GEPSVM extends the GEPSVM framework by incorporating Universum constraints through a ratio-based objective function, while IU-GEPSVM enhances stability through a weighted difference-based formulation that provides independent control over class separation and Universum alignment. The models are evaluated on the Bonn University EEG dataset across two binary classification tasks: (O vs S)-healthy (eyes closed) vs seizure, and (Z vs S)-healthy (eyes open) vs seizure. IU-GEPSVM achieves peak accuracies of 85% (O vs S) and 80% (Z vs S), with mean accuracies of 81.29% and 77.57% respectively, outperforming baseline methods.