ResNet (Residual Neural Network) is a deep-learning architecture that uses residual connections to enable training of very deep neural networks.
To prevent inference attacks in Federated Learning (FL) and reduce the leakage of sensitive information, Client-level Differentially Private Federated Learning (CL-DPFL) is widely used. However, current CL-DPFL methods usually result in sharper loss landscapes, which leads to a decrease in model generalization after differential privacy protection. By using Sharpness Aware Minimization (SAM), the current popular federated learning methods are to find a local flat minimum value to alleviate this problem. However, the local flatness may not reflect the global flatness in CL-DPFL. Therefore, to address this issue and seek global flat minima of models, we propose a new CL-DPFL algorithm, DP-FedPGN, in which we introduce a global gradient norm penalty to the local loss to find the global flat minimum. Moreover, by using our global gradient norm penalty, we not only find a flatter global minimum but also reduce the locally updated norm, which means that we further reduce the error of gradient clipping. From a theoretical perspective, we analyze how DP-FedPGN mitigates the performance degradation caused by DP. Meanwhile, the proposed DP-FedPGN algorithm eliminates the impact of data heterogeneity and achieves fast convergence. We also use R\'enyi DP to provide strict privacy guarantees and provide sensitivity analysis for local updates. Finally, we conduct effectiveness tests on both ResNet and Transformer models, and achieve significant improvements in six visual and natural language processing tasks compared to existing state-of-the-art algorithms. The code is available at https://github.com/junkangLiu0/DP-FedPGN
This paper presents the Autonomous Driving Segment Anything Model (AD-SAM), a fine-tuned vision foundation model for semantic segmentation in autonomous driving (AD). AD-SAM extends the Segment Anything Model (SAM) with a dual-encoder and deformable decoder tailored to spatial and geometric complexity of road scenes. The dual-encoder produces multi-scale fused representations by combining global semantic context from SAM's pretrained Vision Transformer (ViT-H) with local spatial detail from a trainable convolutional deep learning backbone (i.e., ResNet-50). A deformable fusion module aligns heterogeneous features across scales and object geometries. The decoder performs progressive multi-stage refinement using deformable attention. Training is guided by a hybrid loss that integrates Focal, Dice, Lovasz-Softmax, and Surface losses, improving semantic class balance, boundary precision, and optimization stability. Experiments on the Cityscapes and Berkeley DeepDrive 100K (BDD100K) benchmarks show that AD-SAM surpasses SAM, Generalized SAM (G-SAM), and a deep learning baseline (DeepLabV3) in segmentation accuracy. It achieves 68.1 mean Intersection over Union (mIoU) on Cityscapes and 59.5 mIoU on BDD100K, outperforming SAM, G-SAM, and DeepLabV3 by margins of up to +22.9 and +19.2 mIoU in structured and diverse road scenes, respectively. AD-SAM demonstrates strong cross-domain generalization with a 0.87 retention score (vs. 0.76 for SAM), and faster, more stable learning dynamics, converging within 30-40 epochs, enjoying double the learning speed of benchmark models. It maintains 0.607 mIoU with only 1000 samples, suggesting data efficiency critical for reducing annotation costs. These results confirm that targeted architectural and optimization enhancements to foundation models enable reliable and scalable AD perception.
Shortcuts, spurious rules that perform well during training but fail to generalize, present a major challenge to the reliability of deep networks (Geirhos et al., 2020). However, the impact of shortcuts on feature representations remains understudied, obstructing the design of principled shortcut-mitigation methods. To overcome this limitation, we investigate the layer-wise localization of shortcuts in deep models. Our novel experiment design quantifies the layer-wise contribution to accuracy degradation caused by a shortcut-inducing skew by counterfactual training on clean and skewed datasets. We employ our design to study shortcuts on CIFAR-10, Waterbirds, and CelebA datasets across VGG, ResNet, DeiT, and ConvNeXt architectures. We find that shortcut learning is not localized in specific layers but distributed throughout the network. Different network parts play different roles in this process: shallow layers predominantly encode spurious features, while deeper layers predominantly forget core features that are predictive on clean data. We also analyze the differences in localization and describe its principal axes of variation. Finally, our analysis of layer-wise shortcut-mitigation strategies suggests the hardness of designing general methods, supporting dataset- and architecture-specific approaches instead.
There has been a historic assumption that the biometrics of an individual are statistically uncorrelated. We test this assumption by training Bi-Encoder networks on three verification tasks, including fingerprint-to-fingerprint matching, iris-to-iris matching, and cross-modal fingerprint-to-iris matching using 274 subjects with $\sim$100k fingerprints and 7k iris images. We trained ResNet-50 and Vision Transformer backbones in Bi-Encoder architectures such that the contrastive loss between images sampled from the same individual is minimized. The iris ResNet architecture reaches 91 ROC AUC score for iris-to-iris matching, providing clear evidence that the left and right irises of an individual are correlated. Fingerprint models reproduce the positive intra-subject suggested by prior work in this space. This is the first work attempting to use Vision Transformers for this matching. Cross-modal matching rises only slightly above chance, which suggests that more data and a more sophisticated pipeline is needed to obtain compelling results. These findings continue challenge independence assumptions of biometrics and we plan to extend this work to other biometrics in the future. Code available: https://github.com/MatthewSo/bio_fingerprints_iris.
Multi-bit quantization networks enable flexible deployment of deep neural networks by supporting multiple precision levels within a single model. However, existing approaches suffer from significant training overhead as full-dataset updates are repeated for each supported bit-width, resulting in a cost that scales linearly with the number of precisions. Additionally, extra fine-tuning stages are often required to support additional or intermediate precision options, further compounding the overall training burden. To address this issue, we propose two techniques that greatly reduce the training overhead without compromising model utility: (i) Weight bias correction enables shared batch normalization and eliminates the need for fine-tuning by neutralizing quantization-induced bias across bit-widths and aligning activation distributions; and (ii) Bit-wise coreset sampling strategy allows each child model to train on a compact, informative subset selected via gradient-based importance scores by exploiting the implicit knowledge transfer phenomenon. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet-1K with both ResNet and ViT architectures demonstrate that our method achieves competitive or superior accuracy while reducing training time up to 7.88x. Our code is released at https://github.com/a2jinhee/EMQNet_jk.
Accurate waste classification is vital for achieving sustainable waste management and reducing the environmental footprint of urbanization. Misclassification of recyclable materials contributes to landfill accumulation, inefficient recycling, and increased greenhouse gas emissions. To address these issues, this study introduces HybridSOMSpikeNet, a hybrid deep learning framework that integrates convolutional feature extraction, differentiable self-organization, and spiking-inspired temporal processing to enable intelligent and energy-efficient waste classification. The proposed model employs a pre-trained ResNet-152 backbone to extract deep spatial representations, followed by a Differentiable Soft Self-Organizing Map (Soft-SOM) that enhances topological clustering and interpretability. A spiking neural head accumulates temporal activations over discrete time steps, improving robustness and generalization. Trained on a ten-class waste dataset, HybridSOMSpikeNet achieved a test accuracy of 97.39%, outperforming several state-of-the-art architectures while maintaining a lightweight computational profile suitable for real-world deployment. Beyond its technical innovations, the framework provides tangible environmental benefits. By enabling precise and automated waste segregation, it supports higher recycling efficiency, reduces contamination in recyclable streams, and minimizes the ecological and operational costs of waste processing. The approach aligns with global sustainability priorities, particularly the United Nations Sustainable Development Goals (SDG 11 and SDG 12), by contributing to cleaner cities, circular economy initiatives, and intelligent environmental management systems.
Vision-Language Models (VLMs) demonstrate impressive zero-shot generalization through large-scale image-text pretraining, yet their performance can drop once the deployment distribution diverges from the training distribution. To address this, Test-Time Adaptation (TTA) methods update models using unlabeled target data. However, existing approaches often ignore two key challenges: prototype degradation in long-tailed distributions and confusion between semantically similar classes. To tackle these issues, we propose \textbf{C}lass-Aware \textbf{P}rototype \textbf{L}earning with \textbf{N}egative \textbf{C}ontrast(\textbf{CPL-NC}), a lightweight TTA framework designed specifically for VLMs to enhance generalization under distribution shifts. CPL-NC introduces a \textit{Class-Aware Prototype Cache} Module that dynamically adjusts per-class capacity based on test-time frequency and activation history, with a rejuvenation mechanism for inactive classes to retain rare-category knowledge. Additionally, a \textit{Negative Contrastive Learning} Mechanism identifies and constrains hard visual-textual negatives to improve class separability. The framework employs asymmetric optimization, refining only textual prototypes while anchoring on stable visual features. Experiments on 15 benchmarks show that CPL-NC consistently outperforms prior TTA methods across both ResNet-50 and ViT-B/16 backbones.
Processing-in-memory (PIM) has emerged as the go to solution for addressing the von Neumann bottleneck in edge AI accelerators. However, state-of-the-art (SoTA) digital PIM approaches suffer from low compute density, primarily due to the use of bulky bit cells and transistor-heavy adder trees, which impose limitations on macro scalability and energy efficiency. This work introduces Res-DPU, a resource-shared digital PIM unit, with a dual-port 5T SRAM latch and shared 2T AND compute logic. This reflects the per-bit multiplication cost to just 5.25T and reduced the transistor count of the PIM array by up to 56% over the SoTA works. Furthermore, a Transistor-Reduced 2D Interspersed Adder Tree (TRAIT) with FA-7T and PG-FA-26T helps reduce the power consumption of the adder tree by up to 21.35% and leads to improved energy efficiency by 59% compared to conventional 28T RCA designs. We propose a Cycle-controlled Iterative Approximate-Accurate Multiplication (CIA2M) approach, enabling run-time accuracy-latency trade-offs without requiring error-correction circuitry. The 16 KB REP-DPIM macro achieves 0.43 TOPS throughput and 87.22 TOPS/W energy efficiency in TSMC 65nm CMOS, with 96.85% QoR for ResNet-18 or VGG-16 on CIFAR-10, including 30% pruning. The proposed results establish a Res-DPU module for highly scalable and energy-efficient real-time edge AI accelerators.
Large Language Models are increasingly popular in genomics due to their potential to decode complex biological sequences. Hence, researchers require a standardized benchmark to evaluate DNA Language Models (DNA LMs) capabilities. However, evaluating DNA LMs is a complex task that intersects genomic's domain-specific challenges and machine learning methodologies, where seemingly minor implementation details can significantly compromise benchmark validity. We demonstrate this through BEND (Benchmarking DNA Language Models), where hardware-dependent hyperparameters -- number of data loading workers and buffer sizes -- create spurious performance variations of up to 4% for identical models. The problem stems from inadequate data shuffling interacting with domain specific data characteristics. Experiments with three DNA language models (HyenaDNA, DNABERT-2, ResNet-LM) show these artifacts affect both absolute performance and relative model rankings. We propose a simple solution: pre-shuffling data before storage eliminates hardware dependencies while maintaining efficiency. This work highlights how standard ML practices can interact unexpectedly with domain-specific data characteristics, with broader implications for benchmark design in specialized domains.
Recently, Ainsworth et al. empirically demonstrated that, given two independently trained models, applying a parameter permutation that preserves the input-output behavior allows the two models to be connected by a low-loss linear path. When such a path exists, the models are said to achieve linear mode connectivity (LMC). Prior studies, including Ainsworth et al., have reported that achieving LMC requires not only an appropriate permutation search but also sufficiently wide models (e.g., a 32 $\times$ width multiplier for ResNet-20). This is broadly believed to be because increasing the model width ensures a large enough space of candidate permutations, increasing the chance of finding one that yields LMC. In this work, we empirically demonstrate that, even without any permutations, simply widening the models is sufficient for achieving LMC when using a suitable softmax temperature calibration. We further explain why this phenomenon arises by analyzing intermediate layer outputs. Specifically, we introduce layerwise exponentially weighted connectivity (LEWC), which states that the output of each layer of the merged model can be represented as an exponentially weighted sum of the outputs of the corresponding layers of the original models. Consequently the merged model's output matches that of an ensemble of the original models, which facilitates LMC. To the best of our knowledge, this work is the first to show that widening the model not only facilitates nonlinear mode connectivity, as suggested in prior research, but also significantly increases the possibility of achieving linear mode connectivity.