ResNet (Residual Neural Network) is a deep-learning architecture that uses residual connections to enable training of very deep neural networks.
Conventional robotic Braille readers typically rely on discrete, character-by-character scanning, limiting reading speed and disrupting natural flow. Vision-based alternatives often require substantial computation, introduce latency, and degrade in real-world conditions. In this work, we present a high accuracy, real-time pipeline for continuous Braille recognition using Evetac, an open-source neuromorphic event-based tactile sensor. Unlike frame-based vision systems, the neuromorphic tactile modality directly encodes dynamic contact events during continuous sliding, closely emulating human finger-scanning strategies. Our approach combines spatiotemporal segmentation with a lightweight ResNet-based classifier to process sparse event streams, enabling robust character recognition across varying indentation depths and scanning speeds. The proposed system achieves near-perfect accuracy (>=98%) at standard depths, generalizes across multiple Braille board layouts, and maintains strong performance under fast scanning. On a physical Braille board containing daily-living vocabulary, the system attains over 90% word-level accuracy, demonstrating robustness to temporal compression effects that challenge conventional methods. These results position neuromorphic tactile sensing as a scalable, low latency solution for robotic Braille reading, with broader implications for tactile perception in assistive and robotic applications.
Due to silence in early stages, lung cancer has been one of the most leading causes of mortality in cancer patients world-wide. Moreover, major symptoms of lung cancer are hard to differentiate with other respiratory disease symptoms such as COPD, further leading patients to overlook cancer progression in early stages. Thus, to enhance survival rates in lung cancer, early detection from consistent proactive respiratory system monitoring becomes crucial. One of the most prevalent and effective methods for lung cancer monitoring would be low-dose computed tomography(LDCT) chest scans, which led to remarkable enhancements in lung cancer detection or tumor classification tasks under rapid advancements and applications of computer vision based AI models such as EfficientNet or ResNet in image processing. However, though advanced CNN models under transfer learning or ViT based models led to high performing lung cancer detections, due to its intrinsic limitations in terms of correlation dependence and low interpretability due to complexity, expansions of deep learning models to lung cancer treatment analysis or causal intervention analysis simulations are still limited. Therefore, this research introduced LungCRCT: a latent causal representation learning based lung cancer analysis framework that retrieves causal representations of factors within the physical causal mechanism of lung cancer progression. With the use of advanced graph autoencoder based causal discovery algorithms with distance Correlation disentanglement and entropy-based image reconstruction refinement, LungCRCT not only enables causal intervention analysis for lung cancer treatments, but also leads to robust, yet extremely light downstream models in malignant tumor classification tasks with an AUC score of 93.91%.
Detection of human emotions based on facial images in real-world scenarios is a difficult task due to low image quality, variations in lighting, pose changes, background distractions, small inter-class variations, noisy crowd-sourced labels, and severe class imbalance, as observed in the FER-2013 dataset of 48x48 grayscale images. Although recent approaches using large CNNs such as VGG and ResNet achieve reasonable accuracy, they are computationally expensive and memory-intensive, limiting their practicality for real-time applications. We address these challenges using a lightweight and efficient facial emotion recognition pipeline based on EfficientNetB2, trained using a two-stage warm-up and fine-tuning strategy. The model is enhanced with AdamW optimization, decoupled weight decay, label smoothing (epsilon = 0.06) to reduce annotation noise, and clipped class weights to mitigate class imbalance, along with dropout, mixed-precision training, and extensive real-time data augmentation. The model is trained using a stratified 87.5%/12.5% train-validation split while keeping the official test set intact, achieving a test accuracy of 68.78% with nearly ten times fewer parameters than VGG16-based baselines. Experimental results, including per-class metrics and learning dynamics, demonstrate stable training and strong generalization, making the proposed approach suitable for real-time and edge-based applications.
Deep learning applications in Magnetic Resonance Imaging (MRI) predominantly operate on reconstructed magnitude images, a process that discards phase information and requires computationally expensive transforms. Standard neural network architectures rely on local operations (convolutions or grid-patches) that are ill-suited for the global, non-local nature of raw frequency-domain (k-Space) data. In this work, we propose a novel complex-valued Vision Transformer (kViT) designed to perform classification directly on k-Space data. To bridge the geometric disconnect between current architectures and MRI physics, we introduce a radial k-Space patching strategy that respects the spectral energy distribution of the frequency-domain. Extensive experiments on the fastMRI and in-house datasets demonstrate that our approach achieves classification performance competitive with state-of-the-art image-domain baselines (ResNet, EfficientNet, ViT). Crucially, kViT exhibits superior robustness to high acceleration factors and offers a paradigm shift in computational efficiency, reducing VRAM consumption during training by up to 68$\times$ compared to standard methods. This establishes a pathway for resource-efficient, direct-from-scanner AI analysis.
Membership inference attacks (MIAs) pose a serious threat to the privacy of machine learning models by allowing adversaries to determine whether a specific data sample was included in the training set. Although federated learning (FL) is widely regarded as a privacy-aware training paradigm due to its decentralized nature, recent evidence shows that the final global model can still leak sensitive membership information through black-box access. In this paper, we introduce Res-MIA, a novel training-free and black-box membership inference attack that exploits the sensitivity of deep models to high-frequency input details. Res-MIA progressively degrades the input resolution using controlled downsampling and restoration operations, and analyzes the resulting confidence decay in the model's predictions. Our key insight is that training samples exhibit a significantly steeper confidence decline under resolution erosion compared to non-member samples, revealing a robust membership signal. Res-MIA requires no shadow models, no auxiliary data, and only a limited number of forward queries to the target model. We evaluate the proposed attack on a federated ResNet-18 trained on CIFAR-10, where it consistently outperforms existing training-free baselines and achieves an AUC of up to 0.88 with minimal computational overhead. These findings highlight frequency-sensitive overfitting as an important and previously underexplored source of privacy leakage in federated learning, and emphasize the need for privacy-aware model designs that reduce reliance on fine-grained, non-robust input features.
The combination of multimodal Vision-Language Models (VLMs) and Large Language Models (LLMs) opens up new possibilities for medical classification. This work offers a rigorous, unified benchmark by using four publicly available datasets covering text and image modalities (binary and multiclass complexity) that contrasts traditional Machine Learning (ML) with contemporary transformer-based techniques. We evaluated three model classes for each task: Classical ML (LR, LightGBM, ResNet-50), Prompt-Based LLMs/VLMs (Gemini 2.5), and Fine-Tuned PEFT Models (LoRA-adapted Gemma3 variants). All experiments used consistent data splits and aligned metrics. According to our results, traditional machine learning (ML) models set a high standard by consistently achieving the best overall performance across most medical categorization tasks. This was especially true for structured text-based datasets, where the classical models performed exceptionally well. In stark contrast, the LoRA-tuned Gemma variants consistently showed the worst performance across all text and image experiments, failing to generalize from the minimal fine-tuning provided. However, the zero-shot LLM/VLM pipelines (Gemini 2.5) had mixed results; they performed poorly on text-based tasks, but demonstrated competitive performance on the multiclass image task, matching the classical ResNet-50 baseline. These results demonstrate that in many medical categorization scenarios, established machine learning models continue to be the most reliable option. The experiment suggests that foundation models are not universally superior and that the effectiveness of Parameter-Efficient Fine-Tuning (PEFT) is highly dependent on the adaptation strategy, as minimal fine-tuning proved detrimental in this study.
We propose a validation-free checkpointing signal from a single forward-backward pass: the Frobenius norm of the classifier-head gradient on one detached-feature batch, ||g||_F = ||dL/dW||_F. Across ImageNet-1k CNNs and Transformers, this proxy is strongly negative with Top-1 and positive with loss. Selecting the checkpoint with the minimum head gradient in a short tail window closes most of the gap to the oracle (4.24% +/- 2.00% with a universal setup, about 1.12% with light per-family tuning). For practical deployment, a head-scale normalization is more stable within classic CNN families (e.g., ResNets), while a feature-scale normalization works well for Transformers and modern CNNs. The same one-batch probe also predicts COCO detection/segmentation mAP. In diffusion (UNet/DDPM on CIFAR-10), it tracks progress and enables near-oracle tail-window selection; it is positively correlated with same-distribution probe MSE and negatively with FID (lower is better), so it can be used as a lightweight, label-free monitor. Validation labels are never used beyond reporting. The probe adds much less than 0.1% of an epoch and works as a drop-in for validation-free checkpoint selection and early stopping.
We introduce an efficient few-shot keyword spotting model for edge devices, EdgeSpot, that pairs an optimized version of a BC-ResNet-based acoustic backbone with a trainable Per-Channel Energy Normalization frontend and lightweight temporal self-attention. Knowledge distillation is utilized during training by employing a self-supervised teacher model, optimized with Sub-center ArcFace loss. This study demonstrates that the EdgeSpot model consistently provides better accuracy at a fixed false-alarm rate (FAR) than strong BC-ResNet baselines. The largest variant, EdgeSpot-4, improves the 10-shot accuracy at 1% FAR from 73.7% to 82.0%, which requires only 29.4M MACs with 128k parameters.
The development of robust, multilingual speaker recognition systems is hindered by a lack of large-scale, publicly available and multilingual datasets, particularly for the read-speech style crucial for applications like anti-spoofing. To address this gap, we introduce the TidyVoice dataset derived from the Mozilla Common Voice corpus after mitigating its inherent speaker heterogeneity within the provided client IDs. TidyVoice currently contains training and test data from over 212,000 monolingual speakers (Tidy-M) and around 4,500 multilingual speakers (Tidy-X) from which we derive two distinct conditions. The Tidy-M condition contains target and non-target trials from monolingual speakers across 81 languages. The Tidy-X condition contains target and non-target trials from multilingual speakers in both same- and cross-language trials. We employ two architectures of ResNet models, achieving a 0.35% EER by fine-tuning on our comprehensive Tidy-M partition. Moreover, we show that this fine-tuning enhances the model's generalization, improving performance on unseen conversational interview data from the CANDOR corpus. The complete dataset, evaluation trials, and our models are publicly released to provide a new resource for the community.
Background: Coronary angiography (CAG) is the cornerstone imaging modality for evaluating coronary artery stenosis and guiding interventional decision-making. However, interpretation based on single-frame angiographic images remains highly operator-dependent, and conventional deep learning models still face challenges in modeling complex vascular morphology and fine-grained texture patterns.Methods: We propose a Lightweight Quantum-Enhanced ResNet (LQER) for binary classification of coronary angiography images. A pretrained ResNet18 is employed as a classical feature extractor, while a parameterized quantum circuit (PQC) is introduced at the high-level semantic feature space for quantum feature enhancement. The quantum module utilizes data re-uploading and entanglement structures, followed by residual fusion with classical features, enabling end-to-end hybrid optimization with a strictly controlled number of qubits.Results: On an independent test set, the proposed LQER outperformed the classical ResNet18 baseline in accuracy, AUC, and F1-score, achieving a test accuracy exceeding 90%. The results demonstrate that lightweight quantum feature enhancement improves discrimination of positive lesions, particularly under class-imbalanced conditions.Conclusion: This study validates a practical hybrid quantum--classical learning paradigm for coronary angiography analysis, providing a feasible pathway for deploying quantum machine learning in medical imaging applications.