Cardiac amyloidosis (CA) is a rare and underdiagnosed infiltrative cardiomyopathy, and available datasets for machine-learning models are typically small, imbalanced and heterogeneous. This paper presents a Generative Adversarial Network (GAN) and a graphical command-line interface for generating realistic synthetic electrocardiogram (ECG) beats to support early diagnosis and patient stratification in CA. The tool is designed for usability, allowing clinical researchers to train class-specific generators once and then interactively produce large volumes of labelled synthetic beats that preserve the distribution of minority classes.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) and long QT syndrome (LQTS) are inherited arrhythmia syndromes associated with sudden cardiac death. Deep learning shows promise for ECG interpretation, but multi-class inherited arrhythmia classification with clinically grounded interpretability remains underdeveloped. Our objective was to develop and validate a lead-aware deep learning framework for multi-class (ARVC vs LQTS vs control) and binary inherited arrhythmia classification, and to determine optimal strategies for integrating ECG foundation models within arrhythmia screening tools. We assembled a 13-center Canadian cohort (645 patients; 1,344 ECGs). We evaluated four ECG foundation models using three transfer learning approaches: linear probing, fine-tuning, and combined strategies. We developed lead-aware spatial attention networks (LASAN) and assessed integration strategies combining LASAN with foundation models. Performance was compared against the established foundation model baselines. Lead-group masking quantified disease-specific lead dependence. Fine-tuning outperformed linear probing and combined strategies across all foundation models (mean macro-AUROC 0.904 vs 0.825). The best lead-aware integrations achieved near-ceiling performance (HuBERT-ECG hybrid: macro-AUROC 0.990; ARVC vs control AUROC 0.999; LQTS vs control AUROC 0.994). Lead masking demonstrated physiologic plausibility: V1-V3 were most critical for ARVC detection (4.54% AUROC reduction), while lateral leads were preferentially important for LQTS (2.60% drop). Lead-aware architectures achieved state-of-the-art performance for inherited arrhythmia classification, outperforming all existing published models on both binary and multi-class tasks while demonstrating clinically aligned lead dependence. These findings support potential utility for automated ECG screening pending validation.
Medical time series data, such as EEG and ECG, are vital for diagnosing neurological and cardiovascular diseases. However, their precise interpretation faces significant challenges due to high annotation costs, leading to data scarcity, and the limitations of traditional contrastive learning in capturing complex temporal patterns. To address these issues, we propose CoDAC (Contextual Discrepancy-Aware Contrastive learning), a novel framework that enhances diagnostic accuracy and generalization, particularly in small-sample settings. CoDAC leverages external healthy data and introduces a Contextual Discrepancy Estimator (CDE), built upon a Transformer-based Autoencoder, to precisely quantify abnormal signals through context-aware anomaly scores. These scores dynamically inform a Dynamic Multi-views Contrastive Framework (DMCF), which adaptively weights different temporal views to focus contrastive learning on diagnostically relevant, discrepant regions. Our encoder combines dilated convolutions with multi-head attention for robust feature extraction. Comprehensive experiments on Alzheimer's Disease EEG, Parkinson's Disease EEG, and Myocardial Infarction ECG datasets demonstrate CoDAC's superior performance across all metrics, consistently outperforming state-of-the-art baselines, especially under low label availability. Ablation studies further validate the critical contributions of CDE and DMCF. CoDAC offers a robust and interpretable solution for medical time series diagnosis, effectively mitigating data scarcity challenges.
Although deep learning has advanced automated electrocardiogram (ECG) diagnosis, prevalent supervised methods typically treat recordings as undifferentiated one-dimensional (1D) signals or two-dimensional (2D) images. This formulation compels models to learn physiological structures implicitly, resulting in data inefficiency and opacity that diverge from medical reasoning. To address these limitations, we propose BEAT-Net, a Biomimetic ECG Analysis with Tokenization framework that reformulates the problem as a language modeling task. Utilizing a QRS tokenization strategy to transform continuous signals into biologically aligned heartbeat sequences, the architecture explicitly decomposes cardiac physiology through specialized encoders that extract local beat morphology while normalizing spatial lead perspectives and modeling temporal rhythm dependencies. Evaluations across three large-scale benchmarks demonstrate that BEAT-Net matches the diagnostic accuracy of dominant convolutional neural network (CNN) architectures while substantially improving robustness. The framework exhibits exceptional data efficiency, recovering fully supervised performance using only 30 to 35 percent of annotated data. Moreover, learned attention mechanisms provide inherent interpretability by spontaneously reproducing clinical heuristics, such as Lead II prioritization for rhythm analysis, without explicit supervision. These findings indicate that integrating biological priors offers a computationally efficient and interpretable alternative to data-intensive large-scale pre-training.
The electroencephalogram (EEG) has been the gold standard for quantifying mental workload; however, due to its complexity and non-portability, it can be constraining. ECG signals, which are feasible on wearable equipment pieces such as headbands, present a promising method for cognitive state monitoring. This research explores whether electrocardiogram (ECG) signals are able to indicate mental workload consistently and act as surrogates for EEG-based cognitive indicators. This study investigates whether ECG-derived features can serve as surrogate indicators of cognitive load, a concept traditionally quantified using EEG. Using a publicly available multimodal dataset (OpenNeuro) of EEG and ECG recorded during working-memory and listening tasks, features of HRV and Catch22 descriptors are extracted from ECG, and spectral band-power with Catch22 features from EEG. A cross-modal regression framework based on XGBoost was trained to map ECG-derived HRV representations to EEG-derived cognitive features. In order to address data sparsity and model brain-heart interactions, we integrated the PSV-SDG to produce EEG-conditioned synthetic HRV time series.This addresses the challenge of inferring cognitive load solely from ECG-derived features using a combination of multimodal learning, signal processing, and synthetic data generation. These outcomes form a basis for light, interpretable machine learning models that are implemented through wearable biosensors in non-lab environments. Synthetic HRV inclusion enhances robustness, particularly in sparse data situations. Overall, this work is an initiation for building low-cost, explainable, and real-time cognitive monitoring systems for mental health, education, and human-computer interaction, with a focus on ageing and clinical populations.
We introduce CL-QAS, a continual quantum architecture search framework that mitigates the challenges of costly amplitude encoding and catastrophic forgetting in variational quantum circuits. The method uses Tensor-Train encoding to efficiently compress high-dimensional stochastic signals into low-rank quantum feature representations. A bi-loop learning strategy separates circuit parameter optimization from architecture exploration, while an Elastic Weight Consolidation regularization ensures stability across sequential tasks. We derive theoretical upper bounds on approximation, generalization, and robustness under quantum noise, demonstrating that CL-QAS achieves controllable expressivity, sample-efficient generalization, and smooth convergence without barren plateaus. Empirical evaluations on electrocardiogram (ECG)-based signal classification and financial time-series forecasting confirm substantial improvements in accuracy, balanced accuracy, F1 score, and reward. CL-QAS maintains strong forward and backward transfer and exhibits bounded degradation under depolarizing and readout noise, highlighting its potential for adaptive, noise-resilient quantum learning on near-term devices.
Understanding the interaction of neural and cardiac systems during cognitive activity is critical to advancing physiological computing. Although EEG has been the gold standard for assessing mental workload, its limited portability restricts its real-world use. Widely available ECG through wearable devices proposes a pragmatic alternative. This research investigates whether ECG signals can reliably reflect cognitive load and serve as proxies for EEG-based indicators. In this work, we present multimodal data acquired from two different paradigms involving working-memory and passive-listening tasks. For each modality, we extracted ECG time-domain HRV metrics and Catch22 descriptors against EEG spectral and Catch22 features, respectively. We propose a cross-modal XGBoost framework to project the ECG features onto EEG-representative cognitive spaces, thereby allowing workload inferences using only ECG. Our results show that ECG-derived projections expressively capture variation in cognitive states and provide good support for accurate classification. Our findings underpin ECG as an interpretable, real-time, wearable solution for everyday cognitive monitoring.
Cardiovascular diseases, particularly arrhythmias, remain a leading global cause of mortality, necessitating continuous monitoring via the Internet of Medical Things (IoMT). However, state-of-the-art deep learning approaches often impose prohibitive computational overheads, rendering them unsuitable for resource-constrained edge devices. This study proposes a resource-efficient, data-centric framework that prioritizes feature engineering over complexity. Our optimized pipeline makes the complex, high-dimensional arrhythmia data linearly separable. This is achieved by integrating time-frequency wavelet decompositions with graph-theoretic structural descriptors, such as PageRank centrality. This hybrid feature space, combining wavelet decompositions and graph-theoretic descriptors, is then refined using mutual information and recursive elimination, enabling interpretable, ultra-lightweight linear classifiers. Validation on the MIT-BIH and INCART datasets yields 98.44% diagnostic accuracy with an 8.54 KB model footprint. The system achieves 0.46 $μ$s classification inference latency within a 52 ms per-beat pipeline, ensuring real-time operation. These outcomes provide an order-of-magnitude efficiency gain over compressed models, such as KD-Light (25 KB, 96.32% accuracy), advancing battery-less cardiac sensors.
Electrocardiography (ECG) is adopted for identity authentication in wearable devices due to its individual-specific characteristics and inherent liveness. However, existing methods often treat heartbeats as homogeneous signals, overlooking the phase-specific characteristics within the cardiac cycle. To address this, we propose a Hierarchical Phase-Aware Fusion~(HPAF) framework that explicitly avoids cross-feature entanglement through a three-stage design. In the first stage, Intra-Phase Representation (IPR) independently extracts representations for each cardiac phase, ensuring that phase-specific morphological and variation cues are preserved without interference from other phases. In the second stage, Phase-Grouped Hierarchical Fusion (PGHF) aggregates physiologically related phases in a structured manner, enabling reliable integration of complementary phase information. In the final stage, Global Representation Fusion (GRF) further combines the grouped representations and adaptively balances their contributions to produce a unified and discriminative identity representation. Moreover, considering ECG signals are continuously acquired, multiple heartbeats can be collected for each individual. We propose a Heartbeat-Aware Multi-prototype (HAM) enrollment strategy, which constructs a multi-prototype gallery template set to reduce the impact of heartbeat-specific noise and variability. Extensive experiments on three public datasets demonstrate that HPAF achieves state-of-the-art results in the comparison with other methods under both closed and open-set settings.
Coronary artery calcium (CAC) scoring from chest CT is a well-established tool to stratify and refine clinical cardiovascular disease risk estimation. CAC quantification relies on the accurate delineation of calcified lesions, but is oftentimes affected by artifacts introduced by cardiac and respiratory motion. ECG-gated cardiac CTs substantially reduce motion artifacts, but their use in population screening and routine imaging remains limited due to gating requirements and lack of insurance coverage. Although identification of incidental CAC from non-gated chest CT is increasingly considered for it offers an accessible and widely available alternative, this modality is limited by more severe motion artifacts. We present ProDM (Property-aware Progressive Correction Diffusion Model), a generative diffusion framework that restores motion-free calcified lesions from non-gated CTs. ProDM introduces three key components: (1) a CAC motion simulation data engine that synthesizes realistic non-gated acquisitions with diverse motion trajectories directly from cardiac-gated CTs, enabling supervised training without paired data; (2) a property-aware learning strategy incorporating calcium-specific priors through a differentiable calcium consistency loss to preserve lesion integrity; and (3) a progressive correction scheme that reduces artifacts gradually across diffusion steps to enhance stability and calcium fidelity. Experiments on real patient datasets show that ProDM significantly improves CAC scoring accuracy, spatial lesion fidelity, and risk stratification performance compared with several baselines. A reader study on real non-gated scans further confirms that ProDM suppresses motion artifacts and improves clinical usability. These findings highlight the potential of progressive, property-aware frameworks for reliable CAC quantification from routine chest CT imaging.