Polysomnography signals are highly heterogeneous, varying in modality composition (e.g., EEG, EOG, ECG), channel availability (e.g., frontal, occipital EEG), and acquisition protocols across datasets and clinical sites. Most existing models that process polysomnography data rely on a fixed subset of modalities or channels and therefore neglect to fully exploit its inherently multimodal nature. We address this limitation by introducing NAP (Neural Aggregator of Predictions), an attention-based model which learns to combine multiple prediction streams using a tri-axial attention mechanism that captures temporal, spatial, and predictor-level dependencies. NAP is trained to adapt to different input dimensions. By aggregating outputs from frozen, pretrained single-channel models, NAP consistently outperforms individual predictors and simple ensembles, achieving state-of-the-art zero-shot generalization across multiple datasets. While demonstrated in the context of automated sleep staging from polysomnography, the proposed approach could be extended to other multimodal physiological applications.
Localisation tasks in biomedical data often require models to learn meaningful spatial or temporal relationships from signals with complex intensity distributions. A common strategy, exemplified by CoordConv layers, is to append coordinate channels to convolutional inputs, enabling networks to learn absolute positions. In this work, we propose a signal intensity-weighted coordinate representation that replaces the pure coordinate channels with channels scaled by local signal intensity. This modification embeds an intensity-position coupling directly in the input representation, introducing a simple and modality-agnostic inductive bias. We evaluate the approach on two distinct localisation problems: (i) predicting the time of morphological transition in 20-second, two-lead ECG signals, and (ii) regressing the coordinates of nuclear centres in cytological images from the SiPaKMeD dataset. In both cases, the proposed representation yields faster convergence and higher generalisation performance relative to conventional coordinate-channel approaches, demonstrating its effectiveness across both one-dimensional and two-dimensional biomedical signals.
Non-contact electrocardiogram (ECG) reconstruction from radar signals offers a promising approach for unobtrusive cardiac monitoring. We present LifWavNet, a lifting wavelet network based on a multi-resolution analysis and synthesis (MRAS) model for radar-to-ECG reconstruction. Unlike prior models that use fixed wavelet approaches, LifWavNet employs learnable lifting wavelets with lifting and inverse lifting units to adaptively capture radar signal features and synthesize physiologically meaningful ECG waveforms. To improve reconstruction fidelity, we introduce a multi-resolution short-time Fourier transform (STFT) loss, that enforces consistency with the ground-truth ECG in both temporal and spectral domains. Evaluations on two public datasets demonstrate that LifWavNet outperforms state-of-the-art methods in ECG reconstruction and downstream vital sign estimation (heart rate and heart rate variability). Furthermore, intermediate feature visualization highlights the interpretability of multi-resolution decomposition and synthesis in radar-to-ECG reconstruction. These results establish LifWavNet as a robust framework for radar-based non-contact ECG measurement.
The inherent multimodality and heterogeneous temporal structures of medical data pose significant challenges for modeling. We propose MedM2T, a time-aware multimodal framework designed to address these complexities. MedM2T integrates: (i) Sparse Time Series Encoder to flexibly handle irregular and sparse time series, (ii) Hierarchical Time-Aware Fusion to capture both micro- and macro-temporal patterns from multiple dense time series, such as ECGs, and (iii) Bi-Modal Attention to extract cross-modal interactions, which can be extended to any number of modalities. To mitigate granularity gaps between modalities, MedM2T uses modality-specific pre-trained encoders and aligns resulting features within a shared encoder. We evaluated MedM2T on MIMIC-IV and MIMIC-IV-ECG datasets for three tasks that encompass chronic and acute disease dynamics: 90-day cardiovascular disease (CVD) prediction, in-hospital mortality prediction, and ICU length-of-stay (LOS) regression. MedM2T outperformed state-of-the-art multimodal learning frameworks and existing time series models, achieving an AUROC of 0.947 and an AUPRC of 0.706 for CVD prediction; an AUROC of 0.901 and an AUPRC of 0.558 for mortality prediction; and Mean Absolute Error (MAE) of 2.31 for LOS regression. These results highlight the robustness and broad applicability of MedM2T, positioning it as a promising tool in clinical prediction. We provide the implementation of MedM2T at https://github.com/DHLab-TSENG/MedM2T.
Continuous electrocardiogram (ECG) monitoring via wearables offers significant potential for early cardiovascular disease (CVD) detection. However, deploying deep learning models for automated analysis in resource-constrained environments faces reliability challenges due to inevitable Out-of-Distribution (OOD) data. OOD inputs, such as unseen pathologies or noisecorrupted signals, often cause erroneous, high-confidence predictions by standard classifiers, compromising patient safety. Existing OOD detection methods either neglect computational constraints or address noise and unseen classes separately. This paper explores Unsupervised Anomaly Detection (UAD) as an independent, upstream filtering mechanism to improve robustness. We benchmark six UAD approaches, including Deep SVDD, reconstruction-based models, Masked Anomaly Detection, normalizing flows, and diffusion models, optimized via Neural Architecture Search (NAS) under strict resource constraints (at most 512k parameters). Evaluation on PTB-XL and BUT QDB datasets assessed detection of OOD CVD classes and signals unsuitable for analysis due to noise. Results show Deep SVDD consistently achieves the best trade-off between detection and efficiency. In a realistic deployment simulation, integrating the optimized Deep SVDD filter with a diagnostic classifier improved accuracy by up to 21 percentage points over a classifier-only baseline. This study demonstrates that optimized UAD filters can safeguard automated ECG analysis, enabling safer, more reliable continuous cardiovascular monitoring on wearables.
Modal decomposition techniques, such as Empirical Mode Decomposition (EMD), Variational Mode Decomposition (VMD), and Singular Spectrum Analysis (SSA), have advanced time-frequency signal analysis since the early 21st century. These methods are generally classified into two categories: numerical optimization-based methods (EMD, VMD) and spectral decomposition methods (SSA) that consider the physical meaning of signals. The former can produce spurious modes due to the lack of physical constraints, while the latter is more sensitive to noise and struggles with nonlinear signals. Despite continuous improvements in these methods, a modal decomposition approach that effectively combines the strengths of both categories remains elusive. This paper thus proposes a Robust Modal Decomposition (RMD) method with constrained bandwidth, which preserves the intrinsic structure of the signal by mapping the time series into its trajectory-GRAM matrix in phase space. Moreover, the method incorporates bandwidth constraints during the decomposition process, enhancing noise resistance. Extensive experiments on synthetic and real-world datasets, including millimeter-wave radar echoes, electrocardiogram (ECG), phonocardiogram (PCG), and bearing fault detection data, demonstrate the method's effectiveness and versatility. All code and dataset samples are available on GitHub: https://github.com/Einstein-sworder/RMD.
Timely access to laboratory values is critical for clinical decision-making, yet current approaches rely on invasive venous sampling and are intrinsically delayed. Electrocardiography (ECG), as a non-invasive and widely available signal, offers a promising modality for rapid laboratory estimation. Recent progress in deep learning has enabled the extraction of latent hematological signatures from ECGs. However, existing models are constrained by low signal-to-noise ratios, substantial inter-individual variability, limited data diversity, and suboptimal generalization, especially when adapted to low-lead wearable devices. In this work, we conduct an exploratory study leveraging transfer learning to fine-tune ECGFounder, a large-scale pre-trained ECG foundation model, on the Multimodal Clinical Monitoring in the Emergency Department (MC-MED) dataset from Stanford. We generated a corpus of more than 20 million standardized ten-second ECG segments to enhance sensitivity to subtle biochemical correlates. On internal validation, the model demonstrated strong predictive performance (area under the curve above 0.65) for thirty-three laboratory indicators, moderate performance (between 0.55 and 0.65) for fifty-nine indicators, and limited performance (below 0.55) for sixteen indicators. This study provides an efficient artificial-intelligence driven solution and establishes the feasibility scope for real-time, non-invasive estimation of laboratory values.
Deep neural networks can convert ECG page images into analyzable waveforms, yet centralized training often conflicts with cross-institutional privacy and deployment constraints. A cross-silo federated digitization framework is presented that trains a full-model nnU-Net segmentation backbone without sharing images and aggregates updates across sites under realistic non-IID heterogeneity (layout, grid style, scanner profile, noise). The protocol integrates three standard server-side aggregators--FedAvg, FedProx, and FedAdam--and couples secure aggregation with central, user-level differential privacy to align utility with formal guarantees. Key features include: (i) end-to-end full-model training and synchronization across clients; (ii) secure aggregation so the server only observes a clipped, weighted sum once a participation threshold is met; (iii) central Gaussian DP with Renyi accounting applied post-aggregation for auditable user-level privacy; and (iv) a calibration-aware digitization pipeline comprising page normalization, trace segmentation, grid-leakage suppression, and vectorization to twelve-lead signals. Experiments on ECG pages rendered from PTB-XL show consistently faster convergence and higher late-round plateaus with adaptive server updates (FedAdam) relative to FedAvg and FedProx, while approaching centralized performance. The privacy mechanism maintains competitive accuracy while preventing exposure of raw images or per-client updates, yielding deployable, auditable guarantees suitable for multi-institution settings.
Electrocardiogram (ECG) interpretation is essential for cardiovascular disease diagnosis, but current automated systems often struggle with transparency and generalization to unseen conditions. To address this, we introduce ZETA, a zero-shot multimodal framework designed for interpretable ECG diagnosis aligned with clinical workflows. ZETA uniquely compares ECG signals against structured positive and negative clinical observations, which are curated through an LLM-assisted, expert-validated process, thereby mimicking differential diagnosis. Our approach leverages a pre-trained multimodal model to align ECG and text embeddings without disease-specific fine-tuning. Empirical evaluations demonstrate ZETA's competitive zero-shot classification performance and, importantly, provide qualitative and quantitative evidence of enhanced interpretability, grounding predictions in specific, clinically relevant positive and negative diagnostic features. ZETA underscores the potential of aligning ECG analysis with structured clinical knowledge for building more transparent, generalizable, and trustworthy AI diagnostic systems. We will release the curated observation dataset and code to facilitate future research.
Early event prediction (EEP) systems continuously estimate a patient's imminent risk to support clinical decision-making. For bedside trust, risk trajectories must be accurate and temporally stable, shifting only with new, relevant evidence. However, current benchmarks (a) ignore stability of risk scores and (b) evaluate mainly on tabular inputs, leaving trajectory behavior untested. To address this gap, we introduce CAREBench, an EEP benchmark that evaluates deployability using multi-modal inputs-tabular EHR, ECG waveforms, and clinical text-and assesses temporal stability alongside predictive accuracy. We propose a stability metric that quantifies short-term variability in per-patient risk and penalizes abrupt oscillations based on local-Lipschitz constants. CAREBench spans six prediction tasks such as sepsis onset and compares classical learners, deep sequence models, and zero-shot LLMs. Across tasks, existing methods, especially LLMs, struggle to jointly optimize accuracy and stability, with notably poor recall at high-precision operating points. These results highlight the need for models that produce evidence-aligned, stable trajectories to earn clinician trust in continuous monitoring settings. (Code: https://github.com/SeewonChoi/CAREBench.)