Abstract:Early event prediction (EEP) systems continuously estimate a patient's imminent risk to support clinical decision-making. For bedside trust, risk trajectories must be accurate and temporally stable, shifting only with new, relevant evidence. However, current benchmarks (a) ignore stability of risk scores and (b) evaluate mainly on tabular inputs, leaving trajectory behavior untested. To address this gap, we introduce CAREBench, an EEP benchmark that evaluates deployability using multi-modal inputs-tabular EHR, ECG waveforms, and clinical text-and assesses temporal stability alongside predictive accuracy. We propose a stability metric that quantifies short-term variability in per-patient risk and penalizes abrupt oscillations based on local-Lipschitz constants. CAREBench spans six prediction tasks such as sepsis onset and compares classical learners, deep sequence models, and zero-shot LLMs. Across tasks, existing methods, especially LLMs, struggle to jointly optimize accuracy and stability, with notably poor recall at high-precision operating points. These results highlight the need for models that produce evidence-aligned, stable trajectories to earn clinician trust in continuous monitoring settings. (Code: https://github.com/SeewonChoi/CAREBench.)





Abstract:Designing faithful yet accurate AI models is challenging, particularly in the field of individual treatment effect estimation (ITE). ITE prediction models deployed in critical settings such as healthcare should ideally be (i) accurate, and (ii) provide faithful explanations. However, current solutions are inadequate: state-of-the-art black-box models do not supply explanations, post-hoc explainers for black-box models lack faithfulness guarantees, and self-interpretable models greatly compromise accuracy. To address these issues, we propose DISCRET, a self-interpretable ITE framework that synthesizes faithful, rule-based explanations for each sample. A key insight behind DISCRET is that explanations can serve dually as database queries to identify similar subgroups of samples. We provide a novel RL algorithm to efficiently synthesize these explanations from a large search space. We evaluate DISCRET on diverse tasks involving tabular, image, and text data. DISCRET outperforms the best self-interpretable models and has accuracy comparable to the best black-box models while providing faithful explanations. DISCRET is available at https://github.com/wuyinjun-1993/DISCRET-ICML2024.
