Color constancy is the ability of the human vision system to perceive the colors of the objects in the scene largely invariant to the color of the light source. The task of computational color constancy is to estimate the scene illumination and then perform the chromatic adaptation in order to remove the influence of the illumination color on the colors of the objects in the scene.
Color is an important source of information for visual functions such as object recognition, but it is greatly affected by the color of illumination. The ability to perceive the color of a visual target independent of illumination color is called color constancy (CC), and is an important feature for vision systems that use color information. In this study, we investigated the effects of the light intensity encoding function on the performance of CC of the center/surround (C/S) retinex model, which is a well-known model inspired by CC of the visual nervous system. The functions used to encode light intensity are the logarithmic function used in the original C/S retinex model and the Naka-Rushton (N-R) function, which is a model of retinal photoreceptor response. Color-variable LEDs were used to illuminate visual targets with various lighting colors, and color information computed by each model was used to evaluate the degree to which the color of visual targets illuminated with different lighting colors could be discriminated. Color information was represented using the HSV color space and a color plane based on the classical opponent color theory. The results showed that the combination of the N-R function and the double opponent color plane representation provided superior discrimination performance.




White balance (WB) is a key step in the image signal processor (ISP) pipeline that mitigates color casts caused by varying illumination and restores the scene's true colors. Currently, sRGB-based WB editing for post-ISP WB correction is widely used to address color constancy failures in the ISP pipeline when the original camera RAW is unavailable. However, additive color models (e.g., sRGB) are inherently limited by fixed nonlinear transformations and entangled color channels, which often impede their generalization to complex lighting conditions. To address these challenges, we propose a novel framework for WB correction that leverages a perception-inspired Learnable HSI (LHSI) color space. Built upon a cylindrical color model that naturally separates luminance from chromatic components, our framework further introduces dedicated parameters to enhance this disentanglement and learnable mapping to adaptively refine the flexibility. Moreover, a new Mamba-based network is introduced, which is tailored to the characteristics of the proposed LHSI color space. Experimental results on benchmark datasets demonstrate the superiority of our method, highlighting the potential of perception-inspired color space design in computational photography. The source code is available at https://github.com/YangCheng58/WB_Color_Space.
Images acquired in low-light environments present significant obstacles for computer vision systems and human perception, especially for applications requiring accurate object recognition and scene analysis. Such images typically manifest multiple quality issues: amplified noise, inadequate scene illumination, contrast reduction, color distortion, and loss of details. While recent deep learning methods have shown promise, developing simple and efficient frameworks that naturally integrate global illumination adjustment with local detail refinement continues to be an important objective. To this end, we introduce a dual-stage deep learning architecture that combines adaptive gamma correction with attention-enhanced refinement to address these fundamental limitations. The first stage uses an Adaptive Gamma Correction Module (AGCM) to learn suitable gamma values for each pixel based on both local and global cues, producing a brightened intermediate output. The second stage applies an encoder-decoder deep network with Convolutional Block Attention Modules (CBAM) to this brightened image, in order to restore finer details. We train the network using a composite loss that includes L1 reconstruction, SSIM, total variation, color constancy, and gamma regularization terms to balance pixel accuracy with visual quality. Experiments on LOL-v1, LOL-v2 real, and LOL-v2 synthetic datasets show our method reaches PSNR of upto 29.96 dB and upto 0.9458 SSIM, outperforming existing approaches. Additional tests on DICM, LIME, MEF, and NPE datasets using NIQE, BRISQUE, and UNIQUE metrics confirm better perceptual quality with fewer artifacts, achieving the best NIQE scores across all datasets. Our GAtED (Gamma learned and Attention-enabled Encoder-Decoder) method effectively handles both global illumination adjustment and local detail enhancement, offering a practical solution for low-light enhancement.
Images taken in low light often show color shift, low contrast, noise, and other artifacts that hurt computer-vision accuracy. Retinex theory addresses this by viewing an image S as the pixel-wise product of reflectance R and illumination I, mirroring the way people perceive stable object colors under changing light. The decomposition is ill-posed, and classic Retinex models have four key flaws: (i) they treat the red, green, and blue channels independently; (ii) they lack a neuroscientific model of color vision; (iii) they cannot perfectly rebuild the input image; and (iv) they do not explain human color constancy. We introduce the first Quaternion Retinex formulation, in which the scene is written as the Hamilton product of quaternion-valued reflectance and illumination. To gauge how well reflectance stays invariant, we propose the Reflectance Consistency Index. Tests on low-light crack inspection, face detection under varied lighting, and infrared-visible fusion show gains of 2-11 percent over leading methods, with better color fidelity, lower noise, and higher reflectance stability.
Despite modifying only a small localized input region, adversarial patches can drastically change the prediction of computer vision models. However, prior methods either cannot perform satisfactorily under targeted attack scenarios or fail to produce contextually coherent adversarial patches, causing them to be easily noticeable by human examiners and insufficiently stealthy against automatic patch defenses. In this paper, we introduce IAP, a novel attack framework that generates highly invisible adversarial patches based on perceptibility-aware localization and perturbation optimization schemes. Specifically, IAP first searches for a proper location to place the patch by leveraging classwise localization and sensitivity maps, balancing the susceptibility of patch location to both victim model prediction and human visual system, then employs a perceptibility-regularized adversarial loss and a gradient update rule that prioritizes color constancy for optimizing invisible perturbations. Comprehensive experiments across various image benchmarks and model architectures demonstrate that IAP consistently achieves competitive attack success rates in targeted settings with significantly improved patch invisibility compared to existing baselines. In addition to being highly imperceptible to humans, IAP is shown to be stealthy enough to render several state-of-the-art patch defenses ineffective.




Low-light image denoising and enhancement are challenging, especially when traditional noise assumptions, such as Gaussian noise, do not hold in majority. In many real-world scenarios, such as low-light imaging, noise is signal-dependent and is better represented as Poisson noise. In this work, we address the problem of denoising images degraded by Poisson noise under extreme low-light conditions. We introduce a light-weight deep learning-based method that integrates Retinex based decomposition with Poisson denoising into a unified encoder-decoder network. The model simultaneously enhances illumination and suppresses noise by incorporating a Poisson denoising loss to address signal-dependent noise. Without prior requirement for reflectance and illumination, the network learns an effective decomposition process while ensuring consistent reflectance and smooth illumination without causing any form of color distortion. The experimental results demonstrate the effectiveness and practicality of the proposed low-light illumination enhancement method. Our method significantly improves visibility and brightness in low-light conditions, while preserving image structure and color constancy under ambient illumination.




Computational color constancy, or white balancing, is a key module in a camera's image signal processor (ISP) that corrects color casts from scene lighting. Because this operation occurs in the camera-specific raw color space, white balance algorithms must adapt to different cameras. This paper introduces a learning-based method for cross-camera color constancy that generalizes to new cameras without retraining. Our method leverages pre-calibrated color correction matrices (CCMs) available on ISPs that map the camera's raw color space to a standard space (e.g., CIE XYZ). Our method uses these CCMs to transform predefined illumination colors (i.e., along the Planckian locus) into the test camera's raw space. The mapped illuminants are encoded into a compact camera fingerprint embedding (CFE) that enables the network to adapt to unseen cameras. To prevent overfitting due to limited cameras and CCMs during training, we introduce a data augmentation technique that interpolates between cameras and their CCMs. Experimental results across multiple datasets and backbones show that our method achieves state-of-the-art cross-camera color constancy while remaining lightweight and relying only on data readily available in camera ISPs.
Color constancy methods often struggle to generalize across different camera sensors due to varying spectral sensitivities. We present GCC, which leverages diffusion models to inpaint color checkers into images for illumination estimation. Our key innovations include (1) a single-step deterministic inference approach that inpaints color checkers reflecting scene illumination, (2) a Laplacian decomposition technique that preserves checker structure while allowing illumination-dependent color adaptation, and (3) a mask-based data augmentation strategy for handling imprecise color checker annotations. GCC demonstrates superior robustness in cross-camera scenarios, achieving state-of-the-art worst-25% error rates of 5.15{\deg} and 4.32{\deg} in bi-directional evaluations. These results highlight our method's stability and generalization capability across different camera characteristics without requiring sensor-specific training, making it a versatile solution for real-world applications.




Color constancy estimates illuminant chromaticity to correct color-biased images. Recently, Deep Neural Network-driven Color Constancy (DNNCC) models have made substantial advancements. Nevertheless, the potential risks in DNNCC due to the vulnerability of deep neural networks have not yet been explored. In this paper, we conduct the first investigation into the impact of a key factor in color constancy-brightness-on DNNCC from a robustness perspective. Our evaluation reveals that several mainstream DNNCC models exhibit high sensitivity to brightness despite their focus on chromaticity estimation. This sheds light on a potential limitation of existing DNNCC models: their sensitivity to brightness may hinder performance given the widespread brightness variations in real-world datasets. From the insights of our analysis, we propose a simple yet effective brightness robustness enhancement strategy for DNNCC models, termed BRE. The core of BRE is built upon the adaptive step-size adversarial brightness augmentation technique, which identifies high-risk brightness variation and generates augmented images via explicit brightness adjustment. Subsequently, BRE develops a brightness-robustness-aware model optimization strategy that integrates adversarial brightness training and brightness contrastive loss, significantly bolstering the brightness robustness of DNNCC models. BRE is hyperparameter-free and can be integrated into existing DNNCC models, without incurring additional overhead during the testing phase. Experiments on two public color constancy datasets-ColorChecker and Cube+-demonstrate that the proposed BRE consistently enhances the illuminant estimation performance of existing DNNCC models, reducing the estimation error by an average of 5.04% across six mainstream DNNCC models, underscoring the critical role of enhancing brightness robustness in these models.
Multi-illuminant color constancy methods aim to eliminate local color casts within an image through pixel-wise illuminant estimation. Existing methods mainly employ deep learning to establish a direct mapping between an image and its illumination map, which neglects the impact of image scales. To alleviate this problem, we represent an illuminant map as the linear combination of components estimated from multi-scale images. Furthermore, we propose a tri-branch convolution networks to estimate multi-grained illuminant distribution maps from multi-scale images. These multi-grained illuminant maps are merged adaptively with an attentional illuminant fusion module. Through comprehensive experimental analysis and evaluation, the results demonstrate the effectiveness of our method, and it has achieved state-of-the-art performance.