What is Color Constancy? Color constancy is the ability of the human vision system to perceive the colors of the objects in the scene largely invariant to the color of the light source. The task of computational color constancy is to estimate the scene illumination and then perform the chromatic adaptation in order to remove the influence of the illumination color on the colors of the objects in the scene.
Papers and Code
Jun 04, 2025
Abstract:Low-light image denoising and enhancement are challenging, especially when traditional noise assumptions, such as Gaussian noise, do not hold in majority. In many real-world scenarios, such as low-light imaging, noise is signal-dependent and is better represented as Poisson noise. In this work, we address the problem of denoising images degraded by Poisson noise under extreme low-light conditions. We introduce a light-weight deep learning-based method that integrates Retinex based decomposition with Poisson denoising into a unified encoder-decoder network. The model simultaneously enhances illumination and suppresses noise by incorporating a Poisson denoising loss to address signal-dependent noise. Without prior requirement for reflectance and illumination, the network learns an effective decomposition process while ensuring consistent reflectance and smooth illumination without causing any form of color distortion. The experimental results demonstrate the effectiveness and practicality of the proposed low-light illumination enhancement method. Our method significantly improves visibility and brightness in low-light conditions, while preserving image structure and color constancy under ambient illumination.
* 8 pages, 3 figures and 1 table
Via

Apr 10, 2025
Abstract:Computational color constancy, or white balancing, is a key module in a camera's image signal processor (ISP) that corrects color casts from scene lighting. Because this operation occurs in the camera-specific raw color space, white balance algorithms must adapt to different cameras. This paper introduces a learning-based method for cross-camera color constancy that generalizes to new cameras without retraining. Our method leverages pre-calibrated color correction matrices (CCMs) available on ISPs that map the camera's raw color space to a standard space (e.g., CIE XYZ). Our method uses these CCMs to transform predefined illumination colors (i.e., along the Planckian locus) into the test camera's raw space. The mapped illuminants are encoded into a compact camera fingerprint embedding (CFE) that enables the network to adapt to unseen cameras. To prevent overfitting due to limited cameras and CCMs during training, we introduce a data augmentation technique that interpolates between cameras and their CCMs. Experimental results across multiple datasets and backbones show that our method achieves state-of-the-art cross-camera color constancy while remaining lightweight and relying only on data readily available in camera ISPs.
Via

Feb 24, 2025
Abstract:Color constancy methods often struggle to generalize across different camera sensors due to varying spectral sensitivities. We present GCC, which leverages diffusion models to inpaint color checkers into images for illumination estimation. Our key innovations include (1) a single-step deterministic inference approach that inpaints color checkers reflecting scene illumination, (2) a Laplacian decomposition technique that preserves checker structure while allowing illumination-dependent color adaptation, and (3) a mask-based data augmentation strategy for handling imprecise color checker annotations. GCC demonstrates superior robustness in cross-camera scenarios, achieving state-of-the-art worst-25% error rates of 5.15{\deg} and 4.32{\deg} in bi-directional evaluations. These results highlight our method's stability and generalization capability across different camera characteristics without requiring sensor-specific training, making it a versatile solution for real-world applications.
Via

Feb 18, 2025
Abstract:Color constancy estimates illuminant chromaticity to correct color-biased images. Recently, Deep Neural Network-driven Color Constancy (DNNCC) models have made substantial advancements. Nevertheless, the potential risks in DNNCC due to the vulnerability of deep neural networks have not yet been explored. In this paper, we conduct the first investigation into the impact of a key factor in color constancy-brightness-on DNNCC from a robustness perspective. Our evaluation reveals that several mainstream DNNCC models exhibit high sensitivity to brightness despite their focus on chromaticity estimation. This sheds light on a potential limitation of existing DNNCC models: their sensitivity to brightness may hinder performance given the widespread brightness variations in real-world datasets. From the insights of our analysis, we propose a simple yet effective brightness robustness enhancement strategy for DNNCC models, termed BRE. The core of BRE is built upon the adaptive step-size adversarial brightness augmentation technique, which identifies high-risk brightness variation and generates augmented images via explicit brightness adjustment. Subsequently, BRE develops a brightness-robustness-aware model optimization strategy that integrates adversarial brightness training and brightness contrastive loss, significantly bolstering the brightness robustness of DNNCC models. BRE is hyperparameter-free and can be integrated into existing DNNCC models, without incurring additional overhead during the testing phase. Experiments on two public color constancy datasets-ColorChecker and Cube+-demonstrate that the proposed BRE consistently enhances the illuminant estimation performance of existing DNNCC models, reducing the estimation error by an average of 5.04% across six mainstream DNNCC models, underscoring the critical role of enhancing brightness robustness in these models.
Via

Feb 04, 2025
Abstract:Multi-illuminant color constancy methods aim to eliminate local color casts within an image through pixel-wise illuminant estimation. Existing methods mainly employ deep learning to establish a direct mapping between an image and its illumination map, which neglects the impact of image scales. To alleviate this problem, we represent an illuminant map as the linear combination of components estimated from multi-scale images. Furthermore, we propose a tri-branch convolution networks to estimate multi-grained illuminant distribution maps from multi-scale images. These multi-grained illuminant maps are merged adaptively with an attentional illuminant fusion module. Through comprehensive experimental analysis and evaluation, the results demonstrate the effectiveness of our method, and it has achieved state-of-the-art performance.
* 10 pages, 4 figures, this manuscript is under the consideration of
Optics Express
Via

Feb 05, 2025
Abstract:Traditional auto white balance (AWB) algorithms typically assume a single global illuminant source, which leads to color distortions in multi-illuminant scenes. While recent neural network-based methods have shown excellent accuracy in such scenarios, their high parameter count and computational demands limit their practicality for real-time video applications. The Fast Fourier Color Constancy (FFCC) algorithm was proposed for single-illuminant-source scenes, predicting a global illuminant source with high efficiency. However, it cannot be directly applied to multi-illuminant scenarios unless specifically modified. To address this, we propose Integral Fast Fourier Color Constancy (IFFCC), an extension of FFCC tailored for multi-illuminant scenes. IFFCC leverages the proposed integral UV histogram to accelerate histogram computations across all possible regions in Cartesian space and parallelizes Fourier-based convolution operations, resulting in a spatially-smooth illumination map. This approach enables high-accuracy, real-time AWB in multi-illuminant scenes. Extensive experiments show that IFFCC achieves accuracy that is on par with or surpasses that of pixel-level neural networks, while reducing the parameter count by over $400\times$ and processing speed by 20 - $100\times$ faster than network-based approaches.
Via

Mar 06, 2025
Abstract:Optical flow is a fundamental technique for motion estimation, widely applied in video stabilization, interpolation, and object tracking. Recent advancements in artificial intelligence (AI) have enabled deep learning models to leverage optical flow as an important feature for motion analysis. However, traditional optical flow methods rely on restrictive assumptions, such as brightness constancy and slow motion constraints, limiting their effectiveness in complex scenes. Deep learning-based approaches require extensive training on large domain-specific datasets, making them computationally demanding. Furthermore, optical flow is typically visualized in the HSV color space, which introduces nonlinear distortions when converted to RGB and is highly sensitive to noise, degrading motion representation accuracy. These limitations inherently constrain the performance of downstream models, potentially hindering object tracking and motion analysis tasks. To address these challenges, we propose Reynolds flow, a novel training-free flow estimation inspired by the Reynolds transport theorem, offering a principled approach to modeling complex motion dynamics. Beyond the conventional HSV-based visualization, denoted ReynoldsFlow, we introduce an alternative representation, ReynoldsFlow+, designed to improve flow visualization. We evaluate ReynoldsFlow and ReynoldsFlow+ across three video-based benchmarks: tiny object detection on UAVDB, infrared object detection on Anti-UAV, and pose estimation on GolfDB. Experimental results demonstrate that networks trained with ReynoldsFlow+ achieve state-of-the-art (SOTA) performance, exhibiting improved robustness and efficiency across all tasks.
* 10 pages, 3 figures, 3 tables
Via

Feb 27, 2025
Abstract:Computer vision foundation models, such as DINO or OpenCLIP, are trained in a self-supervised manner on large image datasets. Analogously, substantial evidence suggests that the human visual system (HVS) is influenced by the statistical distribution of colors and patterns in the natural world, characteristics also present in the training data of foundation models. The question we address in this paper is whether foundation models trained on natural images mimic some of the low-level characteristics of the human visual system, such as contrast detection, contrast masking, and contrast constancy. Specifically, we designed a protocol comprising nine test types to evaluate the image encoders of 45 foundation and generative models. Our results indicate that some foundation models (e.g., DINO, DINOv2, and OpenCLIP), share some of the characteristics of human vision, but other models show little resemblance. Foundation models tend to show smaller sensitivity to low contrast and rather irregular responses to contrast across frequencies. The foundation models show the best agreement with human data in terms of contrast masking. Our findings suggest that human vision and computer vision may take both similar and different paths when learning to interpret images of the real world. Overall, while differences remain, foundation models trained on vision tasks start to align with low-level human vision, with DINOv2 showing the closest resemblance.
* Accepted by CVPR 2025
Via

Dec 10, 2024
Abstract:Color constancy (CC) is an important ability of the human visual system to stably perceive the colors of objects despite considerable changes in the color of the light illuminating them. While increasing evidence from the field of neuroscience supports that multiple levels of the visual system contribute to the realization of CC, how the primary visual cortex (V1) plays role in CC is not fully resolved. In specific, double-opponent (DO) neurons in V1 have been thought to contribute to realizing a degree of CC, but the computational mechanism is not clear. We build an electrophysiologically based V1 neural model to learn the color of the light source from a natural image dataset with the ground truth illuminants as the labels. Based on the qualitative and quantitative analysis of the responsive properties of the learned model neurons, we found that both the spatial structures and color weights of the receptive fields of the learned model neurons are quite similar to those of the simple and DO neurons recorded in V1. Computationally, DO cells perform more robustly than the simple cells in V1 for illuminant prediction. Therefore, this work provides computational evidence supporting that V1 DO neurons serve to realize color constancy by encoding the illuminant,which is contradictory to the common hypothesis that V1 contributes to CC by discounting the illuminant using its DO cells. This evidence is expected to not only help resolve the visual mechanisms of CC, but also provide inspiration to develop more effective computer vision models.
* 26 pages, 11 figures
Via

Aug 05, 2024
Abstract:While deep learning-based computer-aided diagnosis for skin lesion image analysis is approaching dermatologists' performance levels, there are several works showing that incorporating additional features such as shape priors, texture, color constancy, and illumination further improves the lesion diagnosis performance. In this work, we look at another clinically useful feature, skin lesion elevation, and investigate the feasibility of predicting and leveraging skin lesion elevation labels. Specifically, we use a deep learning model to predict image-level lesion elevation labels from 2D skin lesion images. We test the elevation prediction accuracy on the derm7pt dataset, and use the elevation prediction model to estimate elevation labels for images from five other datasets: ISIC 2016, 2017, and 2018 Challenge datasets, MSK, and DermoFit. We evaluate cross-domain generalization by using these estimated elevation labels as auxiliary inputs to diagnosis models, and show that these improve the classification performance, with AUROC improvements of up to 6.29% and 2.69% for dermoscopic and clinical images, respectively. The code is publicly available at https://github.com/sfu-mial/LesionElevation.
* Medical Image Computing and Computer-Assisted Intervention (MICCAI)
ISIC Skin Image Analysis Workshop (MICCAI ISIC) 2024; 12 pages, 2 tables, 4
figures
Via
